dc.contributor.author |
Drivaliaris, D |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:29:16Z |
|
dc.date.available |
2014-03-01T01:29:16Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0378-620X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19192 |
|
dc.subject |
Algebraic complement |
en |
dc.subject |
Common complement |
en |
dc.subject |
Completely asymptotic subspaces |
en |
dc.subject |
Double triangle subspace lattice |
en |
dc.subject |
Equivalently positioned subspaces |
en |
dc.subject |
Generic position |
en |
dc.subject |
Hilbert space geometry |
en |
dc.subject |
Pair of subspaces |
en |
dc.subject |
Relative position |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Subspaces with a common complement in a separable Hilbert space |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00020-008-1622-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00020-008-1622-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We present an alternative proof of a characterization, due to M. Lauzon and S. Treil, of subspaces with a common complement in a separable Hilbert space. Our approach is motivated by known results concerning the relative position of two subspaces in a Hilbert space. As byproducts we obtain a simple example of a double triangle subspace lattice which is not similar to an operator double triangle and a characterization of pairs of subspaces in generic position which are not completely asymptotic to one another. © 2008 Birkhaueser. |
en |
heal.publisher |
BIRKHAUSER VERLAG AG |
en |
heal.journalName |
Integral Equations and Operator Theory |
en |
dc.identifier.doi |
10.1007/s00020-008-1622-5 |
en |
dc.identifier.isi |
ISI:000259862100002 |
en |
dc.identifier.volume |
62 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
159 |
en |
dc.identifier.epage |
167 |
en |