dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Arvanitakis, AD |
en |
dc.contributor.author |
Mercourakis, SK |
en |
dc.date.accessioned |
2014-03-01T01:29:17Z |
|
dc.date.available |
2014-03-01T01:29:17Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
01668641 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19204 |
|
dc.subject |
K-analytic space |
en |
dc.subject |
Kσ δ space |
en |
dc.subject |
Talagrand compact |
en |
dc.title |
Talagrand's Kσ δ problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.topol.2008.05.014 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.topol.2008.05.014 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We show that the Banach spaces C (K) with K either an adequate Talagrand compact or a quasi adequate σ-Eberlein Talagrand compact are Kσ δ subsets of their second dual endowed with the weak* topology. As consequence we obtain that weakly K-analytic Banach spaces with an unconditional basis are Kσ δ. We also provide an example of a Talagrand compact K such that C (K) is not Kσ δ in its second dual. This answers a problem posed by M. Talagrand. © 2008 Elsevier B.V. All rights reserved. |
en |
heal.journalName |
Topology and its Applications |
en |
dc.identifier.doi |
10.1016/j.topol.2008.05.014 |
en |
dc.identifier.volume |
155 |
en |
dc.identifier.issue |
15 |
en |
dc.identifier.spage |
1737 |
en |
dc.identifier.epage |
1755 |
en |