dc.contributor.author |
Vlahogianni, EI |
en |
dc.contributor.author |
Karlaftis, MG |
en |
dc.contributor.author |
Golias, JC |
en |
dc.date.accessioned |
2014-03-01T01:29:18Z |
|
dc.date.available |
2014-03-01T01:29:18Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1093-9687 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19206 |
|
dc.subject |
Nonlinear Dynamics |
en |
dc.subject |
Traffic Flow |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Construction & Building Technology |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Chlorine compounds |
en |
dc.subject.other |
Cluster analysis |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Flow of solids |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Traffic surveys |
en |
dc.subject.other |
Deterministic structure |
en |
dc.subject.other |
Multi layering |
en |
dc.subject.other |
Non-linear dynamics |
en |
dc.subject.other |
Non-linear evolutions |
en |
dc.subject.other |
Statistical characteristics |
en |
dc.subject.other |
Statistical treatment |
en |
dc.subject.other |
Temporal evolutions |
en |
dc.subject.other |
Temporal pattern identification |
en |
dc.subject.other |
Temporal patterning |
en |
dc.subject.other |
Traffic conditions |
en |
dc.subject.other |
Traffic flowing |
en |
dc.subject.other |
Traffic forecasting |
en |
dc.subject.other |
Traffic patterns |
en |
dc.subject.other |
Traffic volumes |
en |
dc.subject.other |
Urban traffic |
en |
dc.subject.other |
Traffic control |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
cluster analysis |
en |
dc.subject.other |
forecasting method |
en |
dc.subject.other |
temporal evolution |
en |
dc.subject.other |
urban transport |
en |
dc.title |
Temporal evolution of short-term urban traffic flow: A nonlinear dynamics approach |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1467-8667.2008.00554.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1467-8667.2008.00554.x |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Recognizing temporal patterns in traffic flow has been an important consideration in short-term traffic forecasting research. However, little work has been conducted on identifying and associating traffic pattern occurrence with prevailing traffic conditions. We propose a multilayer strategy that first identifies patterns of traffic based on their structure and evolution in time and then clusters the pattern-based evolution of traffic flow with respect to prevailing traffic flow conditions. Temporal pattern identification is based on the statistical treatment of the recurrent behavior of jointly considered volume and occupancy series; clustering is done via a two-level neural network approach. Results on urban signalized arterial 90-second traffic volume and occupancy data indicate that traffic pattern propagation exhibits variability with respect to its statistical characteristics such as deterministic structure and nonlinear evolution. Further, traffic pattern clustering uncovers four distinct classes of traffic pattern evolution, whereas transitional traffic conditions can be straightforwardly identified. © 2008 Computer-Aided Civil and Infrastructure Engineering. |
en |
heal.publisher |
BLACKWELL PUBLISHING |
en |
heal.journalName |
Computer-Aided Civil and Infrastructure Engineering |
en |
dc.identifier.doi |
10.1111/j.1467-8667.2008.00554.x |
en |
dc.identifier.isi |
ISI:000258597400005 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
536 |
en |
dc.identifier.epage |
548 |
en |