HEAL DSpace

Temporal evolution of short-term urban traffic flow: A nonlinear dynamics approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Golias, JC en
dc.date.accessioned 2014-03-01T01:29:18Z
dc.date.available 2014-03-01T01:29:18Z
dc.date.issued 2008 en
dc.identifier.issn 1093-9687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19206
dc.subject Nonlinear Dynamics en
dc.subject Traffic Flow en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Engineering, Civil en
dc.subject.other Chlorine compounds en
dc.subject.other Cluster analysis en
dc.subject.other Dynamics en
dc.subject.other Flow of solids en
dc.subject.other Neural networks en
dc.subject.other Statistical methods en
dc.subject.other Traffic surveys en
dc.subject.other Deterministic structure en
dc.subject.other Multi layering en
dc.subject.other Non-linear dynamics en
dc.subject.other Non-linear evolutions en
dc.subject.other Statistical characteristics en
dc.subject.other Statistical treatment en
dc.subject.other Temporal evolutions en
dc.subject.other Temporal pattern identification en
dc.subject.other Temporal patterning en
dc.subject.other Traffic conditions en
dc.subject.other Traffic flowing en
dc.subject.other Traffic forecasting en
dc.subject.other Traffic patterns en
dc.subject.other Traffic volumes en
dc.subject.other Urban traffic en
dc.subject.other Traffic control en
dc.subject.other artificial neural network en
dc.subject.other cluster analysis en
dc.subject.other forecasting method en
dc.subject.other temporal evolution en
dc.subject.other urban transport en
dc.title Temporal evolution of short-term urban traffic flow: A nonlinear dynamics approach en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1467-8667.2008.00554.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1467-8667.2008.00554.x en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Recognizing temporal patterns in traffic flow has been an important consideration in short-term traffic forecasting research. However, little work has been conducted on identifying and associating traffic pattern occurrence with prevailing traffic conditions. We propose a multilayer strategy that first identifies patterns of traffic based on their structure and evolution in time and then clusters the pattern-based evolution of traffic flow with respect to prevailing traffic flow conditions. Temporal pattern identification is based on the statistical treatment of the recurrent behavior of jointly considered volume and occupancy series; clustering is done via a two-level neural network approach. Results on urban signalized arterial 90-second traffic volume and occupancy data indicate that traffic pattern propagation exhibits variability with respect to its statistical characteristics such as deterministic structure and nonlinear evolution. Further, traffic pattern clustering uncovers four distinct classes of traffic pattern evolution, whereas transitional traffic conditions can be straightforwardly identified. © 2008 Computer-Aided Civil and Infrastructure Engineering. en
heal.publisher BLACKWELL PUBLISHING en
heal.journalName Computer-Aided Civil and Infrastructure Engineering en
dc.identifier.doi 10.1111/j.1467-8667.2008.00554.x en
dc.identifier.isi ISI:000258597400005 en
dc.identifier.volume 23 en
dc.identifier.issue 7 en
dc.identifier.spage 536 en
dc.identifier.epage 548 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής