dc.contributor.author |
Papathanasiou, N |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:29:19Z |
|
dc.date.available |
2014-03-01T01:29:19Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0024-3795 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19217 |
|
dc.subject |
matrix polynomial |
en |
dc.subject |
eigenvalue |
en |
dc.subject |
multiplicity |
en |
dc.subject |
perturbation |
en |
dc.subject |
epsilon-pseudospectrum |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
PSEUDOSPECTRA |
en |
dc.subject.other |
SENSITIVITY |
en |
dc.subject.other |
FORMULA |
en |
dc.title |
The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.laa.2008.04.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.laa.2008.04.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
For a matrix polynomial P(lambda) and a given complex number mu, we introduce a (spectral norm) distance from P(lambda) to the matrix polynomials that have mu as an eigenvalue of geometric multiplicity at least kappa, and a distance from P(X) to the matrix polynomials that have mu as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated perturbations of P(lambda). (C) 2008 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
LINEAR ALGEBRA AND ITS APPLICATIONS |
en |
dc.identifier.doi |
10.1016/j.laa.2008.04.005 |
en |
dc.identifier.isi |
ISI:000259435200006 |
en |
dc.identifier.volume |
429 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
1453 |
en |
dc.identifier.epage |
1477 |
en |