dc.contributor.author |
Sophianopoulos, DS |
en |
dc.contributor.author |
Michaltsos, GT |
en |
dc.contributor.author |
Kounadis, AN |
en |
dc.date.accessioned |
2014-03-01T01:29:19Z |
|
dc.date.available |
2014-03-01T01:29:19Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1024-123X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19219 |
|
dc.subject |
Dynamic Instability |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Asymptotic analysis |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Hopf bifurcation |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Stability criteria |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Algebraic structures |
en |
dc.subject.other |
Applied loads |
en |
dc.subject.other |
Autonomous System (AS) |
en |
dc.subject.other |
Conservative systems |
en |
dc.subject.other |
Constant magnitude |
en |
dc.subject.other |
Coupling effects |
en |
dc.subject.other |
Damped systems |
en |
dc.subject.other |
Damping matrices |
en |
dc.subject.other |
Degrees of freedom |
en |
dc.subject.other |
Dynamic instabilities |
en |
dc.subject.other |
Eigenvalues (of graphs) |
en |
dc.subject.other |
Free-motion |
en |
dc.subject.other |
Global asymptotic stability (GAS) |
en |
dc.subject.other |
Individual (PSS 544-7) |
en |
dc.subject.other |
Jacobian |
en |
dc.subject.other |
Local instability |
en |
dc.subject.other |
Local stability |
en |
dc.subject.other |
Non linear dynamic analyses |
en |
dc.subject.other |
Periodic motions |
en |
dc.subject.other |
Stiffness distributions |
en |
dc.subject.other |
Asymptotic stability |
en |
dc.title |
The effect of infinitesimal damping on the dynamic instability mechanism of conservative systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/2008/471080 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/2008/471080 |
en |
heal.identifier.secondary |
471080 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The local instability of 2 degrees of freedom (DOF) weakly damped systems is thoroughly discussed using the Liénard-Chipart stability criterion. The individual and coupling effect of mass and stiffness distribution on the dynamic asymptotic stability due to mainly infinitesimal damping is examined. These systems may be as follows: (a) unloaded (free motion) and (b) subjected to a suddenly applied load of constant magnitude and direction with infinite duration (forced motion). The aforementioned parameters combined with the algebraic structure of the damping matrix (being either positive semidefinite or indefinite) may have under certain conditions a tremendous effect on the Jacobian eigenvalues and then on the local stability of these autonomous systems. It was found that such systems when unloaded may exhibit periodic motions or a divergent motion, while when subjected to the above step load may experience either a degenerate Hopf bifurcation or periodic attractors due to a generic Hopf bifurcation. Conditions for the existence of purely imaginary eigenvalues leading to global asymptotic stability are fully assessed. The validity of the theoretical findings presented herein is verified via a nonlinear dynamic analysis. |
en |
heal.publisher |
HINDAWI PUBLISHING CORPORATION |
en |
heal.journalName |
Mathematical Problems in Engineering |
en |
dc.identifier.doi |
10.1155/2008/471080 |
en |
dc.identifier.isi |
ISI:000258127400001 |
en |
dc.identifier.volume |
2008 |
en |