HEAL DSpace

The effect of infinitesimal damping on the dynamic instability mechanism of conservative systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sophianopoulos, DS en
dc.contributor.author Michaltsos, GT en
dc.contributor.author Kounadis, AN en
dc.date.accessioned 2014-03-01T01:29:19Z
dc.date.available 2014-03-01T01:29:19Z
dc.date.issued 2008 en
dc.identifier.issn 1024-123X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19219
dc.subject Dynamic Instability en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Asymptotic analysis en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Damping en
dc.subject.other Dynamic analysis en
dc.subject.other Hopf bifurcation en
dc.subject.other Matrix algebra en
dc.subject.other Stability criteria en
dc.subject.other System stability en
dc.subject.other Algebraic structures en
dc.subject.other Applied loads en
dc.subject.other Autonomous System (AS) en
dc.subject.other Conservative systems en
dc.subject.other Constant magnitude en
dc.subject.other Coupling effects en
dc.subject.other Damped systems en
dc.subject.other Damping matrices en
dc.subject.other Degrees of freedom en
dc.subject.other Dynamic instabilities en
dc.subject.other Eigenvalues (of graphs) en
dc.subject.other Free-motion en
dc.subject.other Global asymptotic stability (GAS) en
dc.subject.other Individual (PSS 544-7) en
dc.subject.other Jacobian en
dc.subject.other Local instability en
dc.subject.other Local stability en
dc.subject.other Non linear dynamic analyses en
dc.subject.other Periodic motions en
dc.subject.other Stiffness distributions en
dc.subject.other Asymptotic stability en
dc.title The effect of infinitesimal damping on the dynamic instability mechanism of conservative systems en
heal.type journalArticle en
heal.identifier.primary 10.1155/2008/471080 en
heal.identifier.secondary http://dx.doi.org/10.1155/2008/471080 en
heal.identifier.secondary 471080 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The local instability of 2 degrees of freedom (DOF) weakly damped systems is thoroughly discussed using the Liénard-Chipart stability criterion. The individual and coupling effect of mass and stiffness distribution on the dynamic asymptotic stability due to mainly infinitesimal damping is examined. These systems may be as follows: (a) unloaded (free motion) and (b) subjected to a suddenly applied load of constant magnitude and direction with infinite duration (forced motion). The aforementioned parameters combined with the algebraic structure of the damping matrix (being either positive semidefinite or indefinite) may have under certain conditions a tremendous effect on the Jacobian eigenvalues and then on the local stability of these autonomous systems. It was found that such systems when unloaded may exhibit periodic motions or a divergent motion, while when subjected to the above step load may experience either a degenerate Hopf bifurcation or periodic attractors due to a generic Hopf bifurcation. Conditions for the existence of purely imaginary eigenvalues leading to global asymptotic stability are fully assessed. The validity of the theoretical findings presented herein is verified via a nonlinear dynamic analysis. en
heal.publisher HINDAWI PUBLISHING CORPORATION en
heal.journalName Mathematical Problems in Engineering en
dc.identifier.doi 10.1155/2008/471080 en
dc.identifier.isi ISI:000258127400001 en
dc.identifier.volume 2008 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής