dc.contributor.author |
Buric, M |
en |
dc.contributor.author |
Madore, J |
en |
dc.contributor.author |
Zoupanos, G |
en |
dc.date.accessioned |
2014-03-01T01:29:19Z |
|
dc.date.available |
2014-03-01T01:29:19Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1434-6044 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19223 |
|
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
GRAVITATIONAL RADIATION |
en |
dc.subject.other |
HIGH FREQUENCY |
en |
dc.subject.other |
GEOMETRY |
en |
dc.subject.other |
LIMIT |
en |
dc.title |
The energy-momentum of a Poisson structure |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1140/epjc/s10052-008-0602-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1140/epjc/s10052-008-0602-x |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Consider the quasi-commutative approximation to a noncommutative geometry. It is shown that there is a natural map from the resulting Poisson structure to the Riemann curvature of a metric. This map is applied to the study of high-frequency gravitational radiation. In classical gravity in the WKB approximation there are two results of interest, a dispersion relation and a conservation law. Both of these results can be extended to the noncommutative case, with the difference that they result from a cocycle condition on the high-frequency contribution to the Poisson structure, not from the field equations. © 2008 Springer-Verlag / Società Italiana di Fisica. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
European Physical Journal C |
en |
dc.identifier.doi |
10.1140/epjc/s10052-008-0602-x |
en |
dc.identifier.isi |
ISI:000256325100015 |
en |
dc.identifier.volume |
55 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
489 |
en |
dc.identifier.epage |
498 |
en |