dc.contributor.author |
Karavalakis, G |
en |
dc.contributor.author |
Tzirakis, E |
en |
dc.contributor.author |
Mattheou, L |
en |
dc.contributor.author |
Stournas, S |
en |
dc.contributor.author |
Zannikos, F |
en |
dc.contributor.author |
Karonis, D |
en |
dc.date.accessioned |
2014-03-01T01:29:19Z |
|
dc.date.available |
2014-03-01T01:29:19Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1093-4529 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19225 |
|
dc.subject |
Biodiesel |
en |
dc.subject |
Diesel engine |
en |
dc.subject |
Emissions |
en |
dc.subject |
Marine gas oil |
en |
dc.subject |
Methyl esters |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Alternative fuels |
en |
dc.subject.other |
Biodiesel |
en |
dc.subject.other |
Blending |
en |
dc.subject.other |
Carbon monoxide |
en |
dc.subject.other |
Diesel engines |
en |
dc.subject.other |
Diesel locomotives |
en |
dc.subject.other |
Engine cylinders |
en |
dc.subject.other |
Esterification |
en |
dc.subject.other |
Esters |
en |
dc.subject.other |
Fuels |
en |
dc.subject.other |
Gas emissions |
en |
dc.subject.other |
Gas oils |
en |
dc.subject.other |
Marine engines |
en |
dc.subject.other |
Organic compounds |
en |
dc.subject.other |
Oxygen |
en |
dc.subject.other |
Particulate emissions |
en |
dc.subject.other |
Permanent magnets |
en |
dc.subject.other |
Steel metallurgy |
en |
dc.subject.other |
Sulfur |
en |
dc.subject.other |
Base-lines |
en |
dc.subject.other |
Biodiesel blends |
en |
dc.subject.other |
Brake thermal efficiencies |
en |
dc.subject.other |
Cetane numbers |
en |
dc.subject.other |
CO2 emissions |
en |
dc.subject.other |
Emissions |
en |
dc.subject.other |
EN 14214 |
en |
dc.subject.other |
Exhaust emissions |
en |
dc.subject.other |
Marine gas oil |
en |
dc.subject.other |
Methyl esters |
en |
dc.subject.other |
Oxygen contents |
en |
dc.subject.other |
Particulate matters |
en |
dc.subject.other |
Physico-chemical properties |
en |
dc.subject.other |
Soluble organic fractions |
en |
dc.subject.other |
Stationary diesel engines |
en |
dc.subject.other |
Unregulated emissions |
en |
dc.subject.other |
Leakage (fluid) |
en |
dc.subject.other |
biodiesel |
en |
dc.subject.other |
ester derivative |
en |
dc.subject.other |
fuel |
en |
dc.subject.other |
marine gas oil |
en |
dc.subject.other |
oxygen |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
article |
en |
dc.subject.other |
diesel engine |
en |
dc.subject.other |
exhaust gas |
en |
dc.subject.other |
particulate matter |
en |
dc.subject.other |
Air Pollutants |
en |
dc.subject.other |
Bioelectric Energy Sources |
en |
dc.subject.other |
Vehicle Emissions |
en |
dc.title |
The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/10934520802330057 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/10934520802330057 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO2 emissions was observed. Emissions of NOx were also lower with respect to MGO. This reduction in NOx may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter. Copyright © Taylor & Francis Group, LLC. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering |
en |
dc.identifier.doi |
10.1080/10934520802330057 |
en |
dc.identifier.isi |
ISI:000260676200012 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
14 |
en |
dc.identifier.spage |
1663 |
en |
dc.identifier.epage |
1672 |
en |