dc.contributor.author |
Boulamanti, AK |
en |
dc.contributor.author |
Korologos, CA |
en |
dc.contributor.author |
Philippopoulos, CJ |
en |
dc.date.accessioned |
2014-03-01T01:29:20Z |
|
dc.date.available |
2014-03-01T01:29:20Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1352-2310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19229 |
|
dc.subject |
Aromatic VOCs |
en |
dc.subject |
Langmuir-Hinshelwood kinetics |
en |
dc.subject |
Molecular structure |
en |
dc.subject |
Titanium dioxide |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Meteorology & Atmospheric Sciences |
en |
dc.subject.other |
Aromatic compounds |
en |
dc.subject.other |
Aromatic hydrocarbons |
en |
dc.subject.other |
Benzene |
en |
dc.subject.other |
Catalyst deactivation |
en |
dc.subject.other |
Catalyst poisoning |
en |
dc.subject.other |
Chemical oxygen demand |
en |
dc.subject.other |
Ethylbenzene |
en |
dc.subject.other |
Organic compounds |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Photocatalysis |
en |
dc.subject.other |
Reaction kinetics |
en |
dc.subject.other |
Reaction rates |
en |
dc.subject.other |
Surface reactions |
en |
dc.subject.other |
Titanium dioxide |
en |
dc.subject.other |
Titanium oxides |
en |
dc.subject.other |
Toluene |
en |
dc.subject.other |
Volatile organic compounds |
en |
dc.subject.other |
Xylene |
en |
dc.subject.other |
Ambient temperatures |
en |
dc.subject.other |
Aromatic species |
en |
dc.subject.other |
Aromatic VOCs |
en |
dc.subject.other |
Gas-phase |
en |
dc.subject.other |
Gas-solid |
en |
dc.subject.other |
Heterogeneous photocatalytic oxidation |
en |
dc.subject.other |
Langmuir-Hinshelwood |
en |
dc.subject.other |
Langmuir-Hinshelwood kinetics |
en |
dc.subject.other |
Molecular structure |
en |
dc.subject.other |
O-xylene |
en |
dc.subject.other |
p-Xylene |
en |
dc.subject.other |
Parts per million |
en |
dc.subject.other |
Photo-catalytic oxidation |
en |
dc.subject.other |
Residence time |
en |
dc.subject.other |
Tank reactors |
en |
dc.subject.other |
Titania |
en |
dc.subject.other |
Rate constants |
en |
dc.subject.other |
benzene |
en |
dc.subject.other |
ethylbenzene |
en |
dc.subject.other |
ortho xylene |
en |
dc.subject.other |
titanium dioxide |
en |
dc.subject.other |
toluene |
en |
dc.subject.other |
xylene |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
benzene |
en |
dc.subject.other |
concentration (composition) |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
reaction kinetics |
en |
dc.subject.other |
toluene |
en |
dc.subject.other |
volatile organic compound |
en |
dc.subject.other |
xylene |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
article |
en |
dc.subject.other |
catalyst |
en |
dc.subject.other |
chemical structure |
en |
dc.subject.other |
environmental temperature |
en |
dc.subject.other |
gas |
en |
dc.subject.other |
kinetics |
en |
dc.subject.other |
nuclear reactor |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
photocatalysis |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
solid |
en |
dc.title |
The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.atmosenv.2008.07.016 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.atmosenv.2008.07.016 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In the present study, the gas-solid heterogeneous photocatalytic oxidation (PCO) of six aromatic species of volatile organic compounds (VOCs), benzene, toluene, ethylbenzene, m-, o- and p-xylene over illuminated titania was carried out at ambient temperature in a continuous stirring-tank reactor. Initial VOC concentrations were in the low parts per million (ppm) range. Maximum conversions were over 90% for all compounds except from benzene, ethylbenzene and o-xylene, while the residence time varied from 50 to 210 s. Intermediates were detected only in the case of the xylenes, but catalyst deactivation occurred for all six compounds. The PCO kinetics were well fit by a Langmuir-Hinshelwood (L-H) model for monomolecular surface reaction and it was proved that the reaction rate is related to both constants. The rate constants ranged from 0.147 ppm s(-1) g(cat)(-1) for benzene to 1.067 ppm s(-1) g(cat)(-1) for m-xylene, while the adsorption constants from 0.424 ppm(-1) for ethylbenzene to 0.69 ppm(-1) for toluene. The molecular structure of the compounds was found to play an important role in the reaction. Finally the efficiency of the procedure in the case of a mixture of these aromatic substances was tested. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Atmospheric Environment |
en |
dc.identifier.doi |
10.1016/j.atmosenv.2008.07.016 |
en |
dc.identifier.isi |
ISI:000260941000002 |
en |
dc.identifier.volume |
42 |
en |
dc.identifier.issue |
34 |
en |
dc.identifier.spage |
7844 |
en |
dc.identifier.epage |
7850 |
en |