dc.contributor.author |
Provatidis, CG |
en |
dc.date.accessioned |
2014-03-01T01:29:21Z |
|
dc.date.available |
2014-03-01T01:29:21Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0939-1533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19242 |
|
dc.subject |
Collocation |
en |
dc.subject |
Eigenvalues |
en |
dc.subject |
Finite element |
en |
dc.subject |
Impact |
en |
dc.subject |
Transient response |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Elastic constants |
en |
dc.subject.other |
Speed |
en |
dc.subject.other |
Time domain analysis |
en |
dc.subject.other |
Transient analysis |
en |
dc.subject.other |
Applied mechanics |
en |
dc.subject.other |
Collocation |
en |
dc.subject.other |
Collocation method |
en |
dc.subject.other |
Cross sectioning |
en |
dc.subject.other |
Eigen value analysis |
en |
dc.subject.other |
Eigenvalues |
en |
dc.subject.other |
Elastic rods |
en |
dc.subject.other |
Elastic structures |
en |
dc.subject.other |
Finite element |
en |
dc.subject.other |
Frequency domains |
en |
dc.subject.other |
Heaviside |
en |
dc.subject.other |
Impact |
en |
dc.subject.other |
Lumped masses |
en |
dc.subject.other |
Mass matrices |
en |
dc.subject.other |
Test cases |
en |
dc.subject.other |
Transient response |
en |
dc.subject.other |
Transient response analysis |
en |
dc.subject.other |
Variable cross section |
en |
dc.subject.other |
Frequency domain analysis |
en |
dc.title |
Time- and frequency-domain analysis using lumped mass global collocation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00419-008-0203-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00419-008-0203-z |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Quite recently, a novel global collocation method for the eigenvalue analysis of freely vibrated elastic structures was proposed (Archive of Applied Mechanics: DOI: 10.1007/s00419-007-0159-4 ). This paper extends the latter methodology on several levels, in both the time and frequency domain. Firstly the formulation is updated so that it can also deal with rods of variable cross section. Then, the fully populated mass matrices of the previous formulation are properly replaced by lumped masses, thus saving still more computer effort. Subsequently, a new general formulation for the transient response analysis is proposed. Finally, a novel procedure for the coupling of two neighboring collinear rods is presented. The theory is supported by six test cases concerning elastic rods of constant and variable cross sections. Among these, transient analysis refers to the response of a single rod due to a Heaviside-type loading as well as to the impact between two collinear rods of different cross sections. © 2008 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Archive of Applied Mechanics |
en |
dc.identifier.doi |
10.1007/s00419-008-0203-z |
en |
dc.identifier.isi |
ISI:000259367200006 |
en |
dc.identifier.volume |
78 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
909 |
en |
dc.identifier.epage |
920 |
en |