HEAL DSpace

Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kerschen, G en
dc.contributor.author Vakakis, AF en
dc.contributor.author Lee, YS en
dc.contributor.author McFarland, DM en
dc.contributor.author Bergman, LA en
dc.date.accessioned 2014-03-01T01:29:22Z
dc.date.available 2014-03-01T01:29:22Z
dc.date.issued 2008 en
dc.identifier.issn 1077-5463 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19249
dc.subject Empirical mode decomposition en
dc.subject Hilbert-Huang transform en
dc.subject Nonlinear system identification en
dc.subject Slow-flow dynamics en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Hilbert spaces en
dc.subject.other Nonlinear equations en
dc.subject.other Nonlinear systems en
dc.subject.other Parameter estimation en
dc.subject.other Signal processing en
dc.subject.other Empirical mode decomposition (EMD) en
dc.subject.other Fast dynamics en
dc.subject.other Hilbert-Huang transform en
dc.subject.other Nonstationary signals en
dc.subject.other Slow-flow dynamics en
dc.subject.other Structural dynamics en
dc.title Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics en
heal.type journalArticle en
heal.identifier.primary 10.1177/1077546307079381 en
heal.identifier.secondary http://dx.doi.org/10.1177/1077546307079381 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The Hilbert-Huang transform (HHT) has been shown to be effective for characterizing a wide range of nonstationary signals in terms of elemental components through what has been called the empirical mode decomposition (EMD). The HHT has been utilized extensively despite the absence of a serious analytical foundation, as it provides a concise basis for the analysis of strongly nonlinear systems. In this paper, an attempt is made to provide the missing theoretical link, showing the relationship between the EMD and the slow-flow equations of a system. The slow-flow reduced-order model is established by performing a partition between slow and fast dynamics using the complexification-averaging technique in order to derive a dynamical system described by slowly-varying amplitudes and phases. These slow-flow variables can also be extracted directly from the experimental measurements using the Hilbert transform coupled with the EMD. The comparison between the experimental and analytical results forms the basis of a novel nonlinear system identification method, termed the slow-flow model identification (SFMI) method. Through numerical and experimental application examples, we demonstrate that the proposed method is effective for characterization and parameter estimation of multi-degree-of-freedom nonlinear systems. © 2008 SAGE Publications Los Angeles. en
heal.publisher SAGE PUBLICATIONS LTD en
heal.journalName JVC/Journal of Vibration and Control en
dc.identifier.doi 10.1177/1077546307079381 en
dc.identifier.isi ISI:000252947600005 en
dc.identifier.volume 14 en
dc.identifier.issue 1-2 en
dc.identifier.spage 77 en
dc.identifier.epage 105 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής