dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Dodos, P |
en |
dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:29:26Z |
|
dc.date.available |
2014-03-01T01:29:26Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0025-5831 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19261 |
|
dc.subject |
banach space |
en |
dc.subject |
ramsey theory |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
PARTITION THEOREM |
en |
dc.subject.other |
BIORTHOGONAL SYSTEMS |
en |
dc.subject.other |
INFINITE SUBTREES |
en |
dc.subject.other |
RAMSEY THEOREM |
en |
dc.subject.other |
TREE |
en |
dc.subject.other |
COMPACT |
en |
dc.subject.other |
PROOF |
en |
dc.subject.other |
SETS |
en |
dc.title |
Unconditional families in Banach spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00208-007-0179-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00208-007-0179-y |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
It is shown that for every separable Banach space X with non-separable dual, the space X** contains an unconditional family of size |X**|. The proof is based on Ramsey Theory for trees and finite products of perfect sets of reals. Among its consequences, it is proved that every dual Banach space has a separable quotient. © 2007 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Mathematische Annalen |
en |
dc.identifier.doi |
10.1007/s00208-007-0179-y |
en |
dc.identifier.isi |
ISI:000253201300002 |
en |
dc.identifier.volume |
341 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
15 |
en |
dc.identifier.epage |
38 |
en |