HEAL DSpace

24 Hours in advance forecasting of thermal comfort-discomfort levels during the hot period of the year at representative locations of athens city, greece

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Moustris, KP en
dc.contributor.author Ziomas, IC en
dc.contributor.author Paliatsos, AG en
dc.date.accessioned 2014-03-01T01:29:29Z
dc.date.available 2014-03-01T01:29:29Z
dc.date.issued 2009 en
dc.identifier.issn 1018-4619 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19279
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-67949089846&partnerID=40&md5=f04036d60feec175f78b9f9a40ee65ae en
dc.subject Artificial neural networks en
dc.subject Athens en
dc.subject Cooling power en
dc.subject Discomfort index en
dc.subject Greece en
dc.subject Prediction en
dc.subject.classification Environmental Sciences en
dc.subject.other artificial neural network en
dc.subject.other climate prediction en
dc.subject.other cooling en
dc.subject.other high temperature en
dc.subject.other microclimate en
dc.subject.other nature-society relations en
dc.subject.other public health en
dc.subject.other relative humidity en
dc.subject.other urban climate en
dc.subject.other urbanization en
dc.subject.other weather forecasting en
dc.subject.other weather station en
dc.subject.other wind velocity en
dc.subject.other Athens [Attica] en
dc.subject.other Attica en
dc.subject.other Eurasia en
dc.subject.other Europe en
dc.subject.other Greece en
dc.subject.other Southern Europe en
dc.title 24 Hours in advance forecasting of thermal comfort-discomfort levels during the hot period of the year at representative locations of athens city, greece en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The growth of the city of Athens in the last decades and the phenomenon of urbanisation obviously have led to the creation of a microclimate with explicit effects on human thermal comfort-discomfort. The knowledge of population thermal comfort-discomfort levels, predictable for the next days, is very important for suitable actions in order to protect public health. In this work, an effort has been made to use Artificial Neural Networks (ANNs) for the forecast of the maximum daily value of Thorn's Discomfort Index, and the minimum daily value of an index known as Cooling Power by Siple and Passel, as well as the number of consecutive hours of thermal discomfort due to high temperatures, for the next day. For this aim, the values of air temperature, relative humidity, wind speed, and the corresponding values of two thermal comfort-discomfort indices for the two previous days were used for the daily forecast. Initially, meteorological data, recorded during period 2001-2004 in eight stations of the network of the Greek Ministry of the Environment, Physical Planning and Public Works (GMEPPPW) in the greater Athens area, were statistically treated. Two of these stations, Patission and Thrakomakedones, which presented maximum and minimum temperatures, were selected. For these two stations ANNs were used in order to forecast the values of the above-mentioned thermal comfort-discomfort indices, as well as the number of consecutive thermal discomfort hours during the day, 24 hours predicted before their appearance. en
heal.publisher PARLAR SCIENTIFIC PUBLICATIONS (P S P) en
heal.journalName Fresenius Environmental Bulletin en
dc.identifier.isi ISI:000266898200012 en
dc.identifier.volume 18 en
dc.identifier.issue 5 en
dc.identifier.spage 601 en
dc.identifier.epage 608 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής