dc.contributor.author |
Pleros, N |
en |
dc.contributor.author |
Vyrsokinos, K |
en |
dc.contributor.author |
Tsagkaris, K |
en |
dc.contributor.author |
Tselikas, ND |
en |
dc.date.accessioned |
2014-03-01T01:29:31Z |
|
dc.date.available |
2014-03-01T01:29:31Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0733-8724 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19284 |
|
dc.subject |
60 GHz wireless communications |
en |
dc.subject |
Computer architecture |
en |
dc.subject |
Fiber optics |
en |
dc.subject |
Indoor wireless |
en |
dc.subject |
Microprocessors |
en |
dc.subject |
Moving extended cell |
en |
dc.subject |
Optical fiber networks |
en |
dc.subject |
Optical fibers |
en |
dc.subject |
Optical switches |
en |
dc.subject |
Pico-cellular networks |
en |
dc.subject |
Radio-over-fiber |
en |
dc.subject |
Seamless communication |
en |
dc.subject |
Vehicle communication |
en |
dc.subject |
Wireless communication |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
60 GHz wireless communications |
en |
dc.subject.other |
Indoor wireless |
en |
dc.subject.other |
Microprocessors |
en |
dc.subject.other |
Moving extended cell |
en |
dc.subject.other |
Optical fiber networks |
en |
dc.subject.other |
Pico-cellular networks |
en |
dc.subject.other |
Radio-over-fiber |
en |
dc.subject.other |
Seamless communication |
en |
dc.subject.other |
Wireless communication |
en |
dc.subject.other |
Cellular neural networks |
en |
dc.subject.other |
Cellular telephone systems |
en |
dc.subject.other |
Communication |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Computers |
en |
dc.subject.other |
Fiber optic networks |
en |
dc.subject.other |
Fiber optics |
en |
dc.subject.other |
Fibers |
en |
dc.subject.other |
Global system for mobile communications |
en |
dc.subject.other |
Microprocessor chips |
en |
dc.subject.other |
Mobile antennas |
en |
dc.subject.other |
Network architecture |
en |
dc.subject.other |
Network layers |
en |
dc.subject.other |
Optical communication |
en |
dc.subject.other |
Optical fibers |
en |
dc.subject.other |
Optical filters |
en |
dc.subject.other |
Optical materials |
en |
dc.subject.other |
Optical switches |
en |
dc.subject.other |
Optoelectronic devices |
en |
dc.subject.other |
Radio broadcasting |
en |
dc.subject.other |
Radio links |
en |
dc.subject.other |
Radio transmission |
en |
dc.subject.other |
Switching circuits |
en |
dc.subject.other |
Vehicle transmissions |
en |
dc.subject.other |
Wireless networks |
en |
dc.title |
A 60 GHz radio-over-fiber network architecture for seamless communication with high mobility |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/JLT.2009.2022505 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/JLT.2009.2022505 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We demonstrate a 60 GHz broadband picocellular Radio-over-Fiber network architecture that enables seamless connectivity for highly mobile end-users. Its seamless communication capabilities arise by the supported handover scheme that relies on a novel Moving Extended Cell (MEC) concept. MEC exploits user-centric virtual groups of adjacent cells that transmit the same data content to the user and utilizes a switch mechanism for restructuring the virtual multi-cell area according to the user's mobility pattern, so that a virtual antenna group moves together with the mobile user. We present the theoretical formulation for MEC and show that it can provide zero packet loss and call dropping probability values in high-rate wireless services for a broad range of mobile speeds up to 40 m/sec, independently of the fiber link distances. We also demonstrate the physical layer network architecture and switch mechanism both for a RoF network with a single 60 GHz radio frequency (RF) over each wavelength, as well as for a RoF configuration supporting simultaneous multi-RF channel transmission over each optical wavelength. The performance of the multi-RF-over λ network implementation is evaluated via simulations showing successful 100 Mb/s radio signal transmission over fiber links longer than 30 km. To this end, MEC can enable seamless connectivity and bandwidth guarantees in 60 GHz picocellular RoF networks being also capable of serving multiple users over the same wavelength in a RF frequency-division-multiplexed (FDM) approach. © 2009 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
Journal of Lightwave Technology |
en |
dc.identifier.doi |
10.1109/JLT.2009.2022505 |
en |
dc.identifier.isi |
ISI:000267944500002 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
1957 |
en |
dc.identifier.epage |
1967 |
en |