dc.contributor.author |
Papadopoulos, V |
en |
dc.contributor.author |
Charmpis, DC |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:29:32Z |
|
dc.date.available |
2014-03-01T01:29:32Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19289 |
|
dc.subject |
Buckling analysis of shells |
en |
dc.subject |
Preconditioned Conjugate Gradient method |
en |
dc.subject |
Random eigenvalues |
en |
dc.subject |
Random imperfections |
en |
dc.subject |
Stochastic finite element |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Computational efficiency |
en |
dc.subject.other |
Computational mechanics |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Shells (structures) |
en |
dc.subject.other |
Buckling analysis of shells |
en |
dc.subject.other |
Preconditioned Conjugate Gradient method |
en |
dc.subject.other |
Random eigenvalues |
en |
dc.subject.other |
Random imperfections |
en |
dc.subject.other |
Stochastic finite element |
en |
dc.subject.other |
Conjugate gradient method |
en |
dc.title |
A computationally efficient method for the buckling analysis of shells with stochastic imperfections |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00466-008-0338-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00466-008-0338-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A computationally efficient method is presented for the buckling analysis of shells with random imperfections, based on a linearized buckling approximation of the limit load of the shell. A Stochastic Finite Element Method approach is used for the analysis of the ""imperfect"" shell structure involving random geometric deviations from its perfect geometry, as well as spatial variability of the modulus of elasticity and thickness of the shell, modeled as random fields. A corresponding eigenproblem for the prediction of the buckling load is solved at each MCS using a Rayleigh quotient-based formulation of the Preconditioned Conjugate Gradient method. It is shown that the use of the proposed method reduces drastically the computational effort involved in each MCS, making the implementation of such stochastic analyses in real-world structures affordable. © 2008 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s00466-008-0338-3 |
en |
dc.identifier.isi |
ISI:000263360400008 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
687 |
en |
dc.identifier.epage |
700 |
en |