dc.contributor.author |
Miyato, N |
en |
dc.contributor.author |
Scott, BD |
en |
dc.contributor.author |
Strintzi, D |
en |
dc.contributor.author |
Tokuda, S |
en |
dc.date.accessioned |
2014-03-01T01:29:34Z |
|
dc.date.available |
2014-03-01T01:29:34Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0031-9015 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19313 |
|
dc.subject |
fundamental 1-form |
en |
dc.subject |
symplectic structure |
en |
dc.subject |
Lie perturbation method |
en |
dc.subject |
field theory |
en |
dc.subject |
Noether's theorem |
en |
dc.subject |
transport barrier |
en |
dc.subject |
flow |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
NONLINEAR GYROKINETIC THEORY |
en |
dc.subject.other |
H-MODE |
en |
dc.subject.other |
GYROFLUID TURBULENCE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
TRANSPORT |
en |
dc.subject.other |
TOKAMAKS |
en |
dc.subject.other |
FIELD |
en |
dc.subject.other |
PLASMAS |
en |
dc.subject.other |
WAVES |
en |
dc.title |
A Modification of the Guiding-Centre Fundamental 1-Form with Strong E x B Flow |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1143/JPSJ.78.104501 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1143/JPSJ.78.104501 |
en |
heal.identifier.secondary |
104501 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A modified guiding-centre fundamental 1-form with strong E x B flow is derived by the phase space Lagrangian Lie perturbation method. Since the symplectic part of the derived 1-form is the same as the standard one without the strong E x B flow, it yields the standard Lagrange and Poisson brackets. Therefore the guiding-centre Hamilton equations keep their general form even when temporal evolution of the E x B flow is allowed. Compensation of keeping the standard symplectic structure is paid by complication of the guiding-centre Hamiltonian. However, it is possible to simplify the Hamiltonian in well localised transport barrier regions like a tokamak edge in a high confinement regime and an internal transport barrier in a reversed shear tokamak. The guiding-centre Vlasov and Poisson equations are derived from the variational principle. The conserved energy of the system is obtained from the Noether's theorem. Correspondence to low-frequency fluid equations is shown. |
en |
heal.publisher |
PHYSICAL SOC JAPAN |
en |
heal.journalName |
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN |
en |
dc.identifier.doi |
10.1143/JPSJ.78.104501 |
en |
dc.identifier.isi |
ISI:000271208500015 |
en |
dc.identifier.volume |
78 |
en |
dc.identifier.issue |
10 |
en |