HEAL DSpace

A Modification of the Guiding-Centre Fundamental 1-Form with Strong E x B Flow

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Miyato, N en
dc.contributor.author Scott, BD en
dc.contributor.author Strintzi, D en
dc.contributor.author Tokuda, S en
dc.date.accessioned 2014-03-01T01:29:34Z
dc.date.available 2014-03-01T01:29:34Z
dc.date.issued 2009 en
dc.identifier.issn 0031-9015 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19313
dc.subject fundamental 1-form en
dc.subject symplectic structure en
dc.subject Lie perturbation method en
dc.subject field theory en
dc.subject Noether's theorem en
dc.subject transport barrier en
dc.subject flow en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.other NONLINEAR GYROKINETIC THEORY en
dc.subject.other H-MODE en
dc.subject.other GYROFLUID TURBULENCE en
dc.subject.other EQUATIONS en
dc.subject.other TRANSPORT en
dc.subject.other TOKAMAKS en
dc.subject.other FIELD en
dc.subject.other PLASMAS en
dc.subject.other WAVES en
dc.title A Modification of the Guiding-Centre Fundamental 1-Form with Strong E x B Flow en
heal.type journalArticle en
heal.identifier.primary 10.1143/JPSJ.78.104501 en
heal.identifier.secondary http://dx.doi.org/10.1143/JPSJ.78.104501 en
heal.identifier.secondary 104501 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A modified guiding-centre fundamental 1-form with strong E x B flow is derived by the phase space Lagrangian Lie perturbation method. Since the symplectic part of the derived 1-form is the same as the standard one without the strong E x B flow, it yields the standard Lagrange and Poisson brackets. Therefore the guiding-centre Hamilton equations keep their general form even when temporal evolution of the E x B flow is allowed. Compensation of keeping the standard symplectic structure is paid by complication of the guiding-centre Hamiltonian. However, it is possible to simplify the Hamiltonian in well localised transport barrier regions like a tokamak edge in a high confinement regime and an internal transport barrier in a reversed shear tokamak. The guiding-centre Vlasov and Poisson equations are derived from the variational principle. The conserved energy of the system is obtained from the Noether's theorem. Correspondence to low-frequency fluid equations is shown. en
heal.publisher PHYSICAL SOC JAPAN en
heal.journalName JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN en
dc.identifier.doi 10.1143/JPSJ.78.104501 en
dc.identifier.isi ISI:000271208500015 en
dc.identifier.volume 78 en
dc.identifier.issue 10 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής