dc.contributor.author |
Georgopoulou, CA |
en |
dc.contributor.author |
Giannakoglou, KC |
en |
dc.date.accessioned |
2014-03-01T01:29:34Z |
|
dc.date.available |
2014-03-01T01:29:34Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0305-215X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19315 |
|
dc.subject |
metamodel-assisted memetic algorithms |
en |
dc.subject |
fitness function |
en |
dc.subject |
strength |
en |
dc.subject |
multi-objective optimization |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
EVOLUTIONARY OPTIMIZATION |
en |
dc.subject.other |
SEARCH |
en |
dc.subject.other |
MODELS |
en |
dc.title |
A multi-objective metamodel-assisted memetic algorithm with strength-based local refinement |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03052150902866577 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03052150902866577 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Metamodel-assisted evolutionary algorithms are low-cost optimization methods for CPU-demanding problems. Memetic algorithms combine global and local search methods, aiming at improving the quality of promising solutions. This article proposes a metamodel-assisted memetic algorithm which combines and extends the capabilities of the aforementioned techniques. Herein, metamodels undertake a dual role: they perform a low-cost pre-evaluation of population members during the global search and the gradient-based refinement of promising solutions. This reduces significantly the number of calls to the evaluation tool and overcomes the need for computing the objective function gradients. In multi-objective problems, the selection of individuals for refinement is based on domination and distance criteria. During refinement, a scalar strength function is maximized and this proves to be beneficial in constrained optimization. The proposed metamodel-assisted memetic algorithm employs principles of Lamarckian learning and is demonstrated on mathematical and engineering applications. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
ENGINEERING OPTIMIZATION |
en |
dc.identifier.doi |
10.1080/03052150902866577 |
en |
dc.identifier.isi |
ISI:000274362400002 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
909 |
en |
dc.identifier.epage |
923 |
en |