HEAL DSpace

A multi-objective metamodel-assisted memetic algorithm with strength-based local refinement

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgopoulou, CA en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:29:34Z
dc.date.available 2014-03-01T01:29:34Z
dc.date.issued 2009 en
dc.identifier.issn 0305-215X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19315
dc.subject metamodel-assisted memetic algorithms en
dc.subject fitness function en
dc.subject strength en
dc.subject multi-objective optimization en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Operations Research & Management Science en
dc.subject.other EVOLUTIONARY OPTIMIZATION en
dc.subject.other SEARCH en
dc.subject.other MODELS en
dc.title A multi-objective metamodel-assisted memetic algorithm with strength-based local refinement en
heal.type journalArticle en
heal.identifier.primary 10.1080/03052150902866577 en
heal.identifier.secondary http://dx.doi.org/10.1080/03052150902866577 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Metamodel-assisted evolutionary algorithms are low-cost optimization methods for CPU-demanding problems. Memetic algorithms combine global and local search methods, aiming at improving the quality of promising solutions. This article proposes a metamodel-assisted memetic algorithm which combines and extends the capabilities of the aforementioned techniques. Herein, metamodels undertake a dual role: they perform a low-cost pre-evaluation of population members during the global search and the gradient-based refinement of promising solutions. This reduces significantly the number of calls to the evaluation tool and overcomes the need for computing the objective function gradients. In multi-objective problems, the selection of individuals for refinement is based on domination and distance criteria. During refinement, a scalar strength function is maximized and this proves to be beneficial in constrained optimization. The proposed metamodel-assisted memetic algorithm employs principles of Lamarckian learning and is demonstrated on mathematical and engineering applications. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName ENGINEERING OPTIMIZATION en
dc.identifier.doi 10.1080/03052150902866577 en
dc.identifier.isi ISI:000274362400002 en
dc.identifier.volume 41 en
dc.identifier.issue 10 en
dc.identifier.spage 909 en
dc.identifier.epage 923 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής