HEAL DSpace

A novel free boundary algorithm for the solution of cell population balance models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavousanakis, ME en
dc.contributor.author Mantzaris, NV en
dc.contributor.author Boudouvis, AG en
dc.date.accessioned 2014-03-01T01:29:34Z
dc.date.available 2014-03-01T01:29:34Z
dc.date.issued 2009 en
dc.identifier.issn 0009-2509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19320
dc.subject Cell heterogeneity en
dc.subject lac operon en
dc.subject Mathematical modelling en
dc.subject Nonlinear dynamics en
dc.subject Numerical analysis en
dc.subject.classification Engineering, Chemical en
dc.subject.other Analytical solutions en
dc.subject.other Apriori en
dc.subject.other Arc length en
dc.subject.other Asymptotic behaviors en
dc.subject.other Bi-stability en
dc.subject.other Cell populations en
dc.subject.other Computational time en
dc.subject.other Continuation algorithm en
dc.subject.other Daughter cells en
dc.subject.other Experimental evidence en
dc.subject.other Finite Element en
dc.subject.other Finite element algorithms en
dc.subject.other First-order en
dc.subject.other Free boundary en
dc.subject.other Gene regulatory networks en
dc.subject.other Heterogeneous systems en
dc.subject.other Integral-differential equations en
dc.subject.other lac operon en
dc.subject.other Mathematical modelling en
dc.subject.other Model system en
dc.subject.other Multi-physics en
dc.subject.other Nonlinear dynamics en
dc.subject.other Oscillatory behaviors en
dc.subject.other Recent progress en
dc.subject.other Single-cell level en
dc.subject.other State space en
dc.subject.other Two-dimensional en
dc.subject.other Algorithms en
dc.subject.other Asymptotic analysis en
dc.subject.other Cell culture en
dc.subject.other Cell membranes en
dc.subject.other Cell proliferation en
dc.subject.other Computer simulation en
dc.subject.other Differential equations en
dc.subject.other Nucleic acids en
dc.subject.other RNA en
dc.subject.other Stainless steel en
dc.subject.other Mathematical models en
dc.title A novel free boundary algorithm for the solution of cell population balance models en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ces.2009.06.054 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ces.2009.06.054 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract There exists an abundance of experimental evidence in a variety of systems. showing that cell populations are heterogeneous systems in the sense that properties such as size, shape, DNA and RNA content are unevenly distributed amongst the cells of the population. The quantitative understanding of heterogeneity is of great significance, since neglecting its effect can lead to false predictions. Cell population balance models are used to address the implications of heterogeneity and can accurately capture the dynamics of heterogeneous cell populations. They are first-order partial-integral differential equations and due to the complexity of formulation, analytical solutions are hard to obtain in the majority of cases. Despite the recent progress, the efficient solution of cell population balance models remains a challenging task. One of the main challenges stems from the fact that the boundaries of the intracellular state space are typically not known a priori and using fixed-boundary algorithms leads to inaccuracies and increased computational time demands. Motivated by this challenge, we formulated a free boundary finite element algorithm, capable of solving cell population balance equations more efficiently than the traditional fixed-boundary algorithms. The implementation of the algorithm is accommodated, in the finite element based software package COMSOL Multiphysics. We demonstrate the efficiency of this algorithm using the lac operon gene regulatory network as our model system and perform transient and asymptotic behavior analysis. In the latter case, the pseudo-arc-length continuation algorithm is incorporated, in order to investigate the existence of a bistability region, also observed at the single-cell level. Our analysis, revealed the existence of a region of bistability when cell heterogeneity is taken into account; however, its extend shrinks comparing to homogeneous cell populations. The free boundary algorithm can be easily extended for problems of higher dimensionality and we present results for a two-dimensional cell population balance model, which can exhibit an oscillatory behavior. It is shown that oscillations do not persist when the intracellular content is unevenly distributed amongst the daughter cells. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Chemical Engineering Science en
dc.identifier.doi 10.1016/j.ces.2009.06.054 en
dc.identifier.isi ISI:000271299000005 en
dc.identifier.volume 64 en
dc.identifier.issue 20 en
dc.identifier.spage 4247 en
dc.identifier.epage 4261 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής