HEAL DSpace

A region-based level set segmentation for automatic detection of Man-made objects from aerial and satellite images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karantzalos, K en
dc.contributor.author Argialas, D en
dc.date.accessioned 2014-03-01T01:29:37Z
dc.date.available 2014-03-01T01:29:37Z
dc.date.issued 2009 en
dc.identifier.issn 0099-1112 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19329
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-67650869552&partnerID=40&md5=feffb5c8eada755ca261466836b7e6c6 en
dc.subject.classification Geography, Physical en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Automatic Detection en
dc.subject.other Geometric form en
dc.subject.other Image partition en
dc.subject.other Initial contour en
dc.subject.other Level set segmentation en
dc.subject.other Man made objects en
dc.subject.other Number of iterations en
dc.subject.other Quantitative evaluation en
dc.subject.other Real-time application en
dc.subject.other Region-based en
dc.subject.other Satellite images en
dc.subject.other Statistical descriptions en
dc.subject.other Variational models en
dc.subject.other Curve fitting en
dc.subject.other Level measurement en
dc.subject.other Satellites en
dc.subject.other Object recognition en
dc.subject.other aerial survey en
dc.subject.other algorithm en
dc.subject.other automation en
dc.subject.other detection method en
dc.subject.other experimental study en
dc.subject.other manmade structure en
dc.subject.other modeling en
dc.subject.other photogrammetry en
dc.subject.other qualitative analysis en
dc.subject.other quantitative analysis en
dc.subject.other remote sensing en
dc.subject.other satellite imagery en
dc.subject.other segmentation en
dc.title A region-based level set segmentation for automatic detection of Man-made objects from aerial and satellite images en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A region-based level set segmentation was developed for the automatic detection of man-made objects from aerial and satellite images. The essence of the approach is to optimize the position and the geometric form of an evolving curve, by measuring information within the regions that compose a particular image partition based on their statistical description. The present region-based variational model is fully automated without the need to manually specify the position of the initial contour. Furthermore, it converges after a small number of iterations, allowing real-time applications. The developed algorithm was tested for the detection of roads, buildings and other man-made objects in a number of aerial and satellite images. The effectiveness of the algorithm is demonstrated by the experimental results and the performed qualitative and quantitative evaluation. © 2009 American Society for Photogrammetry and Remote Sensing. en
heal.publisher AMER SOC PHOTOGRAMMETRY en
heal.journalName Photogrammetric Engineering and Remote Sensing en
dc.identifier.isi ISI:000266707600006 en
dc.identifier.volume 75 en
dc.identifier.issue 6 en
dc.identifier.spage 667 en
dc.identifier.epage 677 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής