dc.contributor.author |
Karantzalos, K |
en |
dc.contributor.author |
Argialas, D |
en |
dc.date.accessioned |
2014-03-01T01:29:37Z |
|
dc.date.available |
2014-03-01T01:29:37Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0099-1112 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19329 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-67650869552&partnerID=40&md5=feffb5c8eada755ca261466836b7e6c6 |
en |
dc.subject.classification |
Geography, Physical |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.classification |
Remote Sensing |
en |
dc.subject.classification |
Imaging Science & Photographic Technology |
en |
dc.subject.other |
Automatic Detection |
en |
dc.subject.other |
Geometric form |
en |
dc.subject.other |
Image partition |
en |
dc.subject.other |
Initial contour |
en |
dc.subject.other |
Level set segmentation |
en |
dc.subject.other |
Man made objects |
en |
dc.subject.other |
Number of iterations |
en |
dc.subject.other |
Quantitative evaluation |
en |
dc.subject.other |
Real-time application |
en |
dc.subject.other |
Region-based |
en |
dc.subject.other |
Satellite images |
en |
dc.subject.other |
Statistical descriptions |
en |
dc.subject.other |
Variational models |
en |
dc.subject.other |
Curve fitting |
en |
dc.subject.other |
Level measurement |
en |
dc.subject.other |
Satellites |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
aerial survey |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
automation |
en |
dc.subject.other |
detection method |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
manmade structure |
en |
dc.subject.other |
modeling |
en |
dc.subject.other |
photogrammetry |
en |
dc.subject.other |
qualitative analysis |
en |
dc.subject.other |
quantitative analysis |
en |
dc.subject.other |
remote sensing |
en |
dc.subject.other |
satellite imagery |
en |
dc.subject.other |
segmentation |
en |
dc.title |
A region-based level set segmentation for automatic detection of Man-made objects from aerial and satellite images |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A region-based level set segmentation was developed for the automatic detection of man-made objects from aerial and satellite images. The essence of the approach is to optimize the position and the geometric form of an evolving curve, by measuring information within the regions that compose a particular image partition based on their statistical description. The present region-based variational model is fully automated without the need to manually specify the position of the initial contour. Furthermore, it converges after a small number of iterations, allowing real-time applications. The developed algorithm was tested for the detection of roads, buildings and other man-made objects in a number of aerial and satellite images. The effectiveness of the algorithm is demonstrated by the experimental results and the performed qualitative and quantitative evaluation. © 2009 American Society for Photogrammetry and Remote Sensing. |
en |
heal.publisher |
AMER SOC PHOTOGRAMMETRY |
en |
heal.journalName |
Photogrammetric Engineering and Remote Sensing |
en |
dc.identifier.isi |
ISI:000266707600006 |
en |
dc.identifier.volume |
75 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
667 |
en |
dc.identifier.epage |
677 |
en |