HEAL DSpace

A SEM-fractographic study of dynamic crack propagation effects in particulate epoxy systems under impact loading conditions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kytopoulos, VN en
dc.contributor.author Badalouka, BG en
dc.contributor.author Bourkas, GD en
dc.contributor.author Sideridis, E en
dc.date.accessioned 2014-03-01T01:29:38Z
dc.date.available 2014-03-01T01:29:38Z
dc.date.issued 2009 en
dc.identifier.issn 0731-6844 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19331
dc.subject Crack velocity en
dc.subject Defect-induced shift en
dc.subject Dissipative effects en
dc.subject Fractographic patterns en
dc.subject Fracture process time spectrum en
dc.subject Kinematic toughness en
dc.subject Multiple crack splitting en
dc.subject Retardation effects en
dc.subject Single crack splitting en
dc.subject Surface roughness en
dc.subject Viscoelastic effects en
dc.subject.classification Materials Science, Composites en
dc.subject.classification Polymer Science en
dc.subject.other Brittleness en
dc.subject.other Crack propagation en
dc.subject.other Defects en
dc.subject.other Electron energy loss spectroscopy en
dc.subject.other Energy dissipation en
dc.subject.other Energy dissipators en
dc.subject.other Epoxy resins en
dc.subject.other Fracture en
dc.subject.other Free volume en
dc.subject.other Friction en
dc.subject.other Hydrogen embrittlement en
dc.subject.other Kinematics en
dc.subject.other Mechanics en
dc.subject.other Metal analysis en
dc.subject.other Scanning electron microscopy en
dc.subject.other Strain rate en
dc.subject.other Surface properties en
dc.subject.other Surface roughness en
dc.subject.other Velocity en
dc.subject.other Crack velocity en
dc.subject.other Defect-induced shift en
dc.subject.other Dissipative effects en
dc.subject.other Fractographic patterns en
dc.subject.other Fracture process time spectrum en
dc.subject.other Kinematic toughness en
dc.subject.other Multiple crack splitting en
dc.subject.other Retardation effects en
dc.subject.other Single crack splitting en
dc.subject.other Viscoelastic effects en
dc.subject.other Cracks en
dc.title A SEM-fractographic study of dynamic crack propagation effects in particulate epoxy systems under impact loading conditions en
heal.type journalArticle en
heal.identifier.primary 10.1177/0731684408094743 en
heal.identifier.secondary http://dx.doi.org/10.1177/0731684408094743 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this complex study an attempt was made on the one hand to analyze and understand in a systematic way the exact nature of the formation of certain characteristic energy dissipation-induced fractographic features and patterns/markings revealed by scanning electron microscopy (SEM) in particulate epoxy systems under impact (dynamic) loading conditions, and on the other hand to correlate these patterns and features with relevant crack propagation effects. For this scope a combined approach consisting of a qualitative as well as a semiquantitative analysis was employed. In the qualitative analytical approach it was shown that depending on the actual velocity and direction of crack propagation the above observed fractographic entities can be correlated to certain highly localized energy dissipative processes at front-failures as well as to local inertial molecular mass effects. Depending on the changes in the velocity and direction of propagation, the associated effects may be controlled by two basic processes: the single crack front and the multiple crack front splitting. The first process seemed to be governed by a shear toughness-biased system, whereas the second one used a critical strain energy release rate subcracking mechanism. Under certain conditions both processes may be influenced by inertial molecular effects in promoting the formation of relative-smooth fracture surfaces. The increased presence of particles tends to restrict an increase in the surface roughness due to energy dissipation-induced crack retardation effects. The presence of the notch tends to lower the fracture surface roughness compared to notch-free specimens and also to suppress the occurrence of certain elastic as well as viscoelastic-plastic crack delay effects observed in notch-free specimens in function of particle volume fraction. Based on relevant kinematics-aided modeling and impact energy measurements it seems possible to explain, by a gross semi-quantitative approach, the above particles and notch effects. In this context it seems plausible that the existence of a defect-induced fracturing time spectrum of the propagating crack front, in combination with the 'notch-induced shift' behavior of this spectrum, can be valuable for some approximating explanations of the above notch effects and in general the 'kinematics' of the surface roughness formation. © 2009 SAGE Publications. en
heal.publisher SAGE PUBLICATIONS LTD en
heal.journalName Journal of Reinforced Plastics and Composites en
dc.identifier.doi 10.1177/0731684408094743 en
dc.identifier.isi ISI:000262954300008 en
dc.identifier.volume 28 en
dc.identifier.issue 3 en
dc.identifier.spage 353 en
dc.identifier.epage 377 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής