dc.contributor.author |
Varun |
en |
dc.contributor.author |
Assimaki, D |
en |
dc.contributor.author |
Gazetas, G |
en |
dc.date.accessioned |
2014-03-01T01:29:38Z |
|
dc.date.available |
2014-03-01T01:29:38Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0267-7261 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19332 |
|
dc.subject |
Caissons |
en |
dc.subject |
Embedded foundations |
en |
dc.subject |
Finite elements |
en |
dc.subject |
Kinematic interaction |
en |
dc.subject |
Soil-structure interaction |
en |
dc.subject |
Winkler model |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
Aspect ratio |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Caissons |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Flow interactions |
en |
dc.subject.other |
Foundations |
en |
dc.subject.other |
Hydraulic structures |
en |
dc.subject.other |
Machine design |
en |
dc.subject.other |
Piles |
en |
dc.subject.other |
Pressure vessels |
en |
dc.subject.other |
Probability density function |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Soil structure interactions |
en |
dc.subject.other |
Soils |
en |
dc.subject.other |
Springs (components) |
en |
dc.subject.other |
Stiffness matrix |
en |
dc.subject.other |
Stress concentration |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Embedded foundations |
en |
dc.subject.other |
Finite elements |
en |
dc.subject.other |
Kinematic interaction |
en |
dc.subject.other |
Soil-structure interaction |
en |
dc.subject.other |
Winkler model |
en |
dc.subject.other |
Geologic models |
en |
dc.subject.other |
boundary condition |
en |
dc.subject.other |
caisson |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
elasticity |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
kinematics |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
optimization |
en |
dc.subject.other |
response analysis |
en |
dc.subject.other |
S-wave |
en |
dc.subject.other |
seismic design |
en |
dc.subject.other |
sensitivity analysis |
en |
dc.subject.other |
soil-structure interaction |
en |
dc.subject.other |
three-dimensional modeling |
en |
dc.subject.other |
wave propagation |
en |
dc.subject.other |
Winkler foundation |
en |
dc.title |
A simplified model for lateral response of large diameter caisson foundations-Linear elastic formulation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.soildyn.2008.02.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.soildyn.2008.02.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The transient response of large embedded foundation elements of length-to-diameter aspect ratio D/B = 2-6 is characterized by a complex stress distribution at the pier-soil interface that cannot be adequately represented by means of existing models for shallow foundations or flexible piles. On the other hand, while three-dimensional (3D) numerical solutions are feasible, they are infrequently employed in practice due to their associated cost and effort. Prompted by the scarcity of simplified models for design in current practice, we here develop an analytical model that accounts for the multitude of soil resistance mechanisms mobilized at their base and circumference, while retaining the advantages of simplified methodologies for the design of non-critical facilities. The characteristics of soil resistance mechanisms and corresponding complex spring functions are developed on the basis of finite element simulations, by equating the stiffness matrix terms and/or overall numerically computed response to the analytical expressions derived by means of the proposed Winkler model. Sensitivity analyses are performed for the optimization of the truncated numerical domain size, the optimal finite element size and the far-field dynamic boundary conditions to avoid spurious wave reflections. Numerical simulations of the transient system response to vertically propagating shear waves are next successfully compared to the analytically predicted response. Finally, the applicability of the method is assessed for soil profiles with depth-varying properties. The formulation of frequency-dependent complex spring functions including material damping is also described, while extension of the methodology to account for nonlinear soil behavior and soil-foundation interface separation is described in the conclusion and is being currently investigated. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Soil Dynamics and Earthquake Engineering |
en |
dc.identifier.doi |
10.1016/j.soildyn.2008.02.001 |
en |
dc.identifier.isi |
ISI:000262074600006 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
268 |
en |
dc.identifier.epage |
291 |
en |