HEAL DSpace

A three-dimensional C1 finite element for gradient elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papanicolopulos, S-A en
dc.contributor.author Zervos, A en
dc.contributor.author Vardoulakis, I en
dc.date.accessioned 2014-03-01T01:29:41Z
dc.date.available 2014-03-01T01:29:41Z
dc.date.issued 2009 en
dc.identifier.issn 0029-5981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19337
dc.subject C1 element en
dc.subject Elasticity with microstructure en
dc.subject Finite element methods en
dc.subject Gradient elasticity en
dc.subject Higher-order continuum en
dc.subject Solids en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Benchmarking en
dc.subject.other Differential equations en
dc.subject.other Elastohydrodynamics en
dc.subject.other Finite element method en
dc.subject.other Interpolation en
dc.subject.other Microstructure en
dc.subject.other Three dimensional en
dc.subject.other Alternative approaches en
dc.subject.other Alternative methods en
dc.subject.other Boundary values en
dc.subject.other C element en
dc.subject.other Computational costs en
dc.subject.other Displacement fields en
dc.subject.other Finite element discretizations en
dc.subject.other Finite element methods en
dc.subject.other Gradient elasticity en
dc.subject.other Hexahedral elements en
dc.subject.other Higher-order continuum en
dc.subject.other Patch tests en
dc.subject.other Rates of convergences en
dc.subject.other Single elements en
dc.subject.other Strain gradients en
dc.subject.other Virtual works en
dc.subject.other Elasticity en
dc.title A three-dimensional C1 finite element for gradient elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1002/nme.2449 en
heal.identifier.secondary http://dx.doi.org/10.1002/nme.2449 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In gradient elasticity strain gradient terms appear in the expression of virtual work, leading to the need for C-1 continuous interpolation in finite element discretizations of the displacement field only. Employing such interpolation is generally avoided in favour of the alternative methods that interpolate other quantities as well as displacement, due to the scarcity of C-1 finite elements and their perceived computational cost. In this context, the lack of three-dimensional C-1 elements is of particular concern. In this paper we present a new C-1 hexahedral element which, to the best of our knowledge, is the first three-dimensional C-1 element ever constructed. It is shown to pass the single element and patch tests, and to give excellent rates of convergence in benchmark boundary value problems of gradient elasticity. It is further shown that C-1 elements are not necessarily more computationally expensive than alternative approaches, and it is argued that they may be more efficient in providing good-quality solutions. Copyright (C) 2008 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical Methods in Engineering en
dc.identifier.doi 10.1002/nme.2449 en
dc.identifier.isi ISI:000264204700003 en
dc.identifier.volume 77 en
dc.identifier.issue 10 en
dc.identifier.spage 1396 en
dc.identifier.epage 1415 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής