dc.contributor.author |
Bakopoulos, P |
en |
dc.contributor.author |
Karanasiou, I |
en |
dc.contributor.author |
Pleros, N |
en |
dc.contributor.author |
Zakynthinos, P |
en |
dc.contributor.author |
Uzunoglu, N |
en |
dc.contributor.author |
Avramopoulos, H |
en |
dc.date.accessioned |
2014-03-01T01:29:44Z |
|
dc.date.available |
2014-03-01T01:29:44Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0957-0233 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19338 |
|
dc.subject |
Brain imaging |
en |
dc.subject |
Difference frequency generation |
en |
dc.subject |
Supercontinuum generation |
en |
dc.subject |
THz imaging |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.other |
Brain imaging |
en |
dc.subject.other |
Brain imaging techniques |
en |
dc.subject.other |
Continuous waves |
en |
dc.subject.other |
Difference frequency generation |
en |
dc.subject.other |
Fiber Fabry-Perot filter |
en |
dc.subject.other |
Frequency tunability |
en |
dc.subject.other |
Highly nonlinear |
en |
dc.subject.other |
Optical source |
en |
dc.subject.other |
Optical wavelength |
en |
dc.subject.other |
Roadmap |
en |
dc.subject.other |
Short-pulse |
en |
dc.subject.other |
Supercontinuum generation |
en |
dc.subject.other |
Supercontinuum generations |
en |
dc.subject.other |
THz frequencies |
en |
dc.subject.other |
THz imaging |
en |
dc.subject.other |
THz radiation |
en |
dc.subject.other |
THz sources |
en |
dc.subject.other |
Imaging techniques |
en |
dc.subject.other |
Optical fibers |
en |
dc.subject.other |
Optoelectronic devices |
en |
dc.subject.other |
Technological forecasting |
en |
dc.subject.other |
Optical frequency conversion |
en |
dc.title |
A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0957-0233/20/10/104001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0957-0233/20/10/104001 |
en |
heal.identifier.secondary |
104001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry-Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2-2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques. © 2009 IOP Publishing Ltd. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Measurement Science and Technology |
en |
dc.identifier.doi |
10.1088/0957-0233/20/10/104001 |
en |
dc.identifier.isi |
ISI:000269874900002 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
10 |
en |