dc.contributor.author |
Kristaly, A |
en |
dc.contributor.author |
Lazar, I |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:29:46Z |
|
dc.date.available |
2014-03-01T01:29:46Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19339 |
|
dc.subject |
Critical points |
en |
dc.subject |
Non-smooth functionals |
en |
dc.subject |
Variational inequality |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Critical points |
en |
dc.subject.other |
Critical-point theory |
en |
dc.subject.other |
Functionals |
en |
dc.subject.other |
Half-line |
en |
dc.subject.other |
Multiple solutions |
en |
dc.subject.other |
Non-smooth |
en |
dc.subject.other |
Non-smooth functionals |
en |
dc.subject.other |
Variational inequalities |
en |
dc.subject.other |
Variational inequality |
en |
dc.subject.other |
Equations of state |
en |
dc.subject.other |
Variational techniques |
en |
dc.title |
A variational inequality on the half line |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2009.03.077 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2009.03.077 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Multiple solutions are obtained for a variational inequality defined on the half line (0, infinity). Our approach is based on a key embedding result as well as on the non-smooth critical point theory for Szulkin-type functionals. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2009.03.077 |
en |
dc.identifier.isi |
ISI:000269140700070 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
5003 |
en |
dc.identifier.epage |
5009 |
en |