dc.contributor.author |
Asouti, VG |
en |
dc.contributor.author |
Giannakoglou, KC |
en |
dc.date.accessioned |
2014-03-01T01:29:48Z |
|
dc.date.available |
2014-03-01T01:29:48Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0305-215X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19350 |
|
dc.subject |
asynchronous evolutionary algorithm |
en |
dc.subject |
parallelization |
en |
dc.subject |
aerodynamic shape optimization |
en |
dc.subject |
multi-objective optimization |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
GENETIC ALGORITHMS |
en |
dc.subject.other |
DIFFERENTIAL EVOLUTION |
en |
dc.subject.other |
DESIGN |
en |
dc.title |
Aerodynamic optimization using a parallel asynchronous evolutionary algorithm controlled by strongly interacting demes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03052150802415665 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03052150802415665 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A parallel asynchronous evolutionary algorithm controlled by strongly interacting demes for single- and multi-objective optimization problems is proposed. It is suitable even for non-homogeneous, multiprocessor systems, ensuring maximum exploitation of the available processors. The search algorithm utilizes a structured topology of evaluation agents organized in a number of inter-communicating demes arranged on a 2D supporting mesh. Once an evaluation terminates and a processor becomes idle, a series of intra- and inter-deme processes determines the next agent to undergo evaluation on this specific processor. Real coding and differential evolution operators are used. Mathematical and aerodynamic-turbomachinery optimization problems are presented to assess the proposed method in terms of CPU cost, parallel efficiency and quality of solutions obtained within a predefined number of evaluations. Comparisons with conventional evolutionary algorithms, parallelized based on the master-slave model on the same computational platform, are presented. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
ENGINEERING OPTIMIZATION |
en |
dc.identifier.doi |
10.1080/03052150802415665 |
en |
dc.identifier.isi |
ISI:000263644100003 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
241 |
en |
dc.identifier.epage |
257 |
en |