dc.contributor.author |
Pertselakis, M |
en |
dc.contributor.author |
Raouzaiou, N |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T01:29:49Z |
|
dc.date.available |
2014-03-01T01:29:49Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
15715736 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19355 |
|
dc.subject |
Adaptive Behavior |
en |
dc.subject |
Curse of Dimensionality |
en |
dc.subject |
Dynamic System |
en |
dc.subject |
Intelligent System |
en |
dc.subject |
Resource Allocation |
en |
dc.subject |
Resource Control |
en |
dc.subject |
Sensitivity Analysis |
en |
dc.subject |
Structure Learning |
en |
dc.subject |
neuro fuzzy inference system |
en |
dc.title |
An adaptive resource allocating neuro-fuzzy inference system with sensitivity analysis resource control |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/978-1-4419-0221-4_59 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-1-4419-0221-4_59 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Adaptability in non-stationary contexts is a very important property and a constant desire for modern intelligent systems and is usually associated with dynamic system behaviors. In this framework, we present a novel methodology of dynamic resource control and optimization for neurofuzzy inference systems. Our approach involves a neurofuzzy model with structural learning capabilities that adds rule nodes when necessary during the training phase. Sensitivity analysis is then applied to the trained network so as to evaluate the network rules and control their usage in a dynamic manner based on a confidence threshold. Therefore, on one hand, we result in a well-balanced structure with an improved adaptive behavior and, on the other hand, we propose a way to control and restrict the ""curse of dimensionality"". The experimental results on a number of classification problems prove clearly the strengths and benefits of this approach. © 2009 International Federation for Information Processing. |
en |
heal.journalName |
IFIP International Federation for Information Processing |
en |
dc.identifier.doi |
10.1007/978-1-4419-0221-4_59 |
en |
dc.identifier.volume |
296 |
en |
dc.identifier.spage |
509 |
en |
dc.identifier.epage |
516 |
en |