HEAL DSpace

An annual midterm energy forecasting model using fuzzy logic

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Elias, CN en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T01:29:49Z
dc.date.available 2014-03-01T01:29:49Z
dc.date.issued 2009 en
dc.identifier.issn 0885-8950 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19358
dc.subject Energy forecasting en
dc.subject Fuzzy logic en
dc.subject Optimization of membership functions en
dc.subject Standard deviation en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Backpropagation en
dc.subject.other Electric load forecasting en
dc.subject.other Forecasting en
dc.subject.other Fourier transforms en
dc.subject.other Functions en
dc.subject.other Fuzzy logic en
dc.subject.other Fuzzy sets en
dc.subject.other Fuzzy systems en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Probability density function en
dc.subject.other Standards en
dc.subject.other Statistics en
dc.subject.other Artificial neural networks en
dc.subject.other Energy forecasting en
dc.subject.other Energy values en
dc.subject.other Fuzzy logic methods en
dc.subject.other Input variables en
dc.subject.other Mathematical expressions en
dc.subject.other Optimization of membership functions en
dc.subject.other Optimization process en
dc.subject.other Power systems en
dc.subject.other Regression methods en
dc.subject.other Standard deviation en
dc.subject.other Training sets en
dc.subject.other Triangular membership functions en
dc.subject.other Membership functions en
dc.title An annual midterm energy forecasting model using fuzzy logic en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPWRS.2008.2009490 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPWRS.2008.2009490 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN). © 2009 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Power Systems en
dc.identifier.doi 10.1109/TPWRS.2008.2009490 en
dc.identifier.isi ISI:000262817200050 en
dc.identifier.volume 24 en
dc.identifier.issue 1 en
dc.identifier.spage 469 en
dc.identifier.epage 478 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής