dc.contributor.author |
Elias, CN |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.date.accessioned |
2014-03-01T01:29:49Z |
|
dc.date.available |
2014-03-01T01:29:49Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0885-8950 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19358 |
|
dc.subject |
Energy forecasting |
en |
dc.subject |
Fuzzy logic |
en |
dc.subject |
Optimization of membership functions |
en |
dc.subject |
Standard deviation |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Electric load forecasting |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Fuzzy logic |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Fuzzy systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Probability density function |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Statistics |
en |
dc.subject.other |
Artificial neural networks |
en |
dc.subject.other |
Energy forecasting |
en |
dc.subject.other |
Energy values |
en |
dc.subject.other |
Fuzzy logic methods |
en |
dc.subject.other |
Input variables |
en |
dc.subject.other |
Mathematical expressions |
en |
dc.subject.other |
Optimization of membership functions |
en |
dc.subject.other |
Optimization process |
en |
dc.subject.other |
Power systems |
en |
dc.subject.other |
Regression methods |
en |
dc.subject.other |
Standard deviation |
en |
dc.subject.other |
Training sets |
en |
dc.subject.other |
Triangular membership functions |
en |
dc.subject.other |
Membership functions |
en |
dc.title |
An annual midterm energy forecasting model using fuzzy logic |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPWRS.2008.2009490 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPWRS.2008.2009490 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN). © 2009 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Power Systems |
en |
dc.identifier.doi |
10.1109/TPWRS.2008.2009490 |
en |
dc.identifier.isi |
ISI:000262817200050 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
469 |
en |
dc.identifier.epage |
478 |
en |