dc.contributor.author |
Markaki, VE |
en |
dc.contributor.author |
Asvestas, PA |
en |
dc.contributor.author |
Matsopoulos, GK |
en |
dc.date.accessioned |
2014-03-01T01:29:50Z |
|
dc.date.available |
2014-03-01T01:29:50Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0169-2607 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19368 |
|
dc.subject |
Automatic point correspondence |
en |
dc.subject |
Dental subtraction radiography |
en |
dc.subject |
Iterative Closest Point |
en |
dc.subject |
Mutual information |
en |
dc.subject |
Point-based registration |
en |
dc.subject |
Template matching |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Medical Informatics |
en |
dc.subject.other |
Automatic point correspondence |
en |
dc.subject.other |
Dental subtraction radiography |
en |
dc.subject.other |
Iterative Closest Point |
en |
dc.subject.other |
Mutual information |
en |
dc.subject.other |
Point-based registration |
en |
dc.subject.other |
Image enhancement |
en |
dc.subject.other |
Image registration |
en |
dc.subject.other |
Radiography |
en |
dc.subject.other |
Radiology |
en |
dc.subject.other |
Template matching |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Biometry |
en |
dc.subject.other |
Dental Models |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Radiographic Image Interpretation, Computer-Assisted |
en |
dc.subject.other |
Radiography, Dental, Digital |
en |
dc.title |
An iterative point correspondence algorithm for automatic image registration: An application to dental subtraction radiography |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cmpb.2008.07.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cmpb.2008.07.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, an Automatic Iterative Point Correspondence (AIPC) algorithm towards image registration is presented. Given an image pair, distinctive points are extracted only in one of the images (reference image), and the corresponding points in the other image are obtained automatically by maximizing a similarity measure between regions of the two images with respect to the parameters of a local transformation. The maximization is accomplished by means of an iterative procedure, in which candidate solutions for the transformation parameters are tested at each iteration; these solutions are evaluated by the similarity measure between image regions. The detected point pairs by the application of the AIPC algorithm are then used to estimate the parameters of a global projective transformation for the registration of the image pair. The proposed AIPC algorithm was applied on 113 in vitro and in vivo dental image pairs providing improved registration accuracy against three widely used registration methods. (c) 2008 Elsevier Ireland Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER IRELAND LTD |
en |
heal.journalName |
Computer Methods and Programs in Biomedicine |
en |
dc.identifier.doi |
10.1016/j.cmpb.2008.07.003 |
en |
dc.identifier.isi |
ISI:000263214200006 |
en |
dc.identifier.volume |
93 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
61 |
en |
dc.identifier.epage |
72 |
en |