HEAL DSpace

Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chrysafinos, K en
dc.date.accessioned 2014-03-01T01:29:51Z
dc.date.available 2014-03-01T01:29:51Z
dc.date.issued 2009 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19372
dc.subject Convection-diffusion equations en
dc.subject Distributed optimal control en
dc.subject Error estimates en
dc.subject Finite element methods en
dc.subject Implicit parabolic equations en
dc.subject Lagrangian coordinates en
dc.subject Moving meshes en
dc.subject.classification Mathematics, Applied en
dc.subject.other Convection-diffusion equations en
dc.subject.other Distributed optimal control en
dc.subject.other Error estimates en
dc.subject.other Implicit parabolic equations en
dc.subject.other Lagrangian coordinates en
dc.subject.other Moving meshes en
dc.subject.other Diffusion in liquids en
dc.subject.other Error analysis en
dc.subject.other Galerkin methods en
dc.subject.other Heat convection en
dc.subject.other Lagrange multipliers en
dc.subject.other Optimization en
dc.subject.other Finite element method en
dc.title Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cam.2009.02.092 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cam.2009.02.092 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract This work concerns analysis and error estimates for optimal control problems related to implicit parabolic equations. The minimization of the tracking functional subject to implicit parabolic equations is examined. Existence of an optimal solution is proved and an optimality system of equations is derived. Semi-discrete (in space) error estimates for the finite element approximations of the optimality system are presented. These estimates are symmetric and applicable for higher-order discretizations. Finally, fully-discrete error estimates of arbitrarily high-order are presented based on a discontinuous Galerkin (in time) and conforming (in space) scheme. Two examples related to the Lagrangian moving mesh Galerkin formulation for the convection-diffusion equation are described. (C) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.doi 10.1016/j.cam.2009.02.092 en
dc.identifier.isi ISI:000267393700030 en
dc.identifier.volume 231 en
dc.identifier.issue 1 en
dc.identifier.spage 327 en
dc.identifier.epage 348 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής