HEAL DSpace

Application of Kohonen network for automatic point correspondence in 2D medical images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markaki, VE en
dc.contributor.author Asvestas, PA en
dc.contributor.author Matsopoulos, GK en
dc.date.accessioned 2014-03-01T01:29:52Z
dc.date.available 2014-03-01T01:29:52Z
dc.date.issued 2009 en
dc.identifier.issn 0010-4825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19384
dc.subject Automatic correspondence en
dc.subject Global transformation en
dc.subject Iterative closest point en
dc.subject Kohonen network en
dc.subject Local transformation en
dc.subject Medical images en
dc.subject Point extraction en
dc.subject Self organizing maps en
dc.subject Similarity measure en
dc.subject Template matching en
dc.subject.classification Biology en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.other Automatic correspondence en
dc.subject.other Global transformation en
dc.subject.other Iterative closest point en
dc.subject.other Kohonen network en
dc.subject.other Local transformation en
dc.subject.other Medical images en
dc.subject.other Point extraction en
dc.subject.other Similarity measure en
dc.subject.other Algorithms en
dc.subject.other Education en
dc.subject.other Parameter estimation en
dc.subject.other Self organizing maps en
dc.subject.other Set theory en
dc.subject.other Template matching en
dc.subject.other Medical imaging en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other clinical article en
dc.subject.other computed tomography scanner en
dc.subject.other computer assisted tomography en
dc.subject.other human en
dc.subject.other image analysis en
dc.subject.other Kohonen network en
dc.subject.other learning en
dc.subject.other nuclear magnetic resonance imaging en
dc.subject.other nuclear magnetic resonance scanner en
dc.subject.other priority journal en
dc.subject.other quantitative analysis en
dc.subject.other retina image en
dc.subject.other Algorithms en
dc.subject.other Brain en
dc.subject.other Humans en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Magnetic Resonance Imaging en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Retina en
dc.subject.other Tomography, X-Ray Computed en
dc.title Application of Kohonen network for automatic point correspondence in 2D medical images en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compbiomed.2009.04.006 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compbiomed.2009.04.006 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this paper, a generalized application of Kohonen Network for automatic point correspondence of unimodal medical images is presented. Given a pair of two-dimensional medical images of the same anatomical region and a set of interest points in one of the images, the algorithm detects effectively the set of corresponding points in the second image, by exploiting the properties of the Kohonen self organizing maps (SOMs) and embedding them in a stochastic optimization framework. The correspondences are established by determining the parameters of local transformations that map the interest points of the first image to their corresponding points in the second image. The parameters of each transformation are computed in an iterative way, using a modification of the competitive learning, as implemented by SOMs. The proposed algorithm was tested on medical imaging data from three different modalities (CT, MR and red-free retinal images) subject to known and unknown transformations. The quantitative results in all cases exhibited sub-pixel accuracy. The algorithm also proved to work efficiently in the case of noise corrupted data. Finally. in comparison to a previously published algorithm that was also based on SOMs, as well as two widely used techniques for detection of point correspondences (template matching and iterative closest point), the proposed algorithm exhibits an improved performance in terms of accuracy and robustness. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers in Biology and Medicine en
dc.identifier.doi 10.1016/j.compbiomed.2009.04.006 en
dc.identifier.isi ISI:000267931000007 en
dc.identifier.volume 39 en
dc.identifier.issue 7 en
dc.identifier.spage 630 en
dc.identifier.epage 645 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής