dc.contributor.author |
Markaki, VE |
en |
dc.contributor.author |
Asvestas, PA |
en |
dc.contributor.author |
Matsopoulos, GK |
en |
dc.date.accessioned |
2014-03-01T01:29:52Z |
|
dc.date.available |
2014-03-01T01:29:52Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0010-4825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19384 |
|
dc.subject |
Automatic correspondence |
en |
dc.subject |
Global transformation |
en |
dc.subject |
Iterative closest point |
en |
dc.subject |
Kohonen network |
en |
dc.subject |
Local transformation |
en |
dc.subject |
Medical images |
en |
dc.subject |
Point extraction |
en |
dc.subject |
Self organizing maps |
en |
dc.subject |
Similarity measure |
en |
dc.subject |
Template matching |
en |
dc.subject.classification |
Biology |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Mathematical & Computational Biology |
en |
dc.subject.other |
Automatic correspondence |
en |
dc.subject.other |
Global transformation |
en |
dc.subject.other |
Iterative closest point |
en |
dc.subject.other |
Kohonen network |
en |
dc.subject.other |
Local transformation |
en |
dc.subject.other |
Medical images |
en |
dc.subject.other |
Point extraction |
en |
dc.subject.other |
Similarity measure |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Education |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Self organizing maps |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Template matching |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
clinical article |
en |
dc.subject.other |
computed tomography scanner |
en |
dc.subject.other |
computer assisted tomography |
en |
dc.subject.other |
human |
en |
dc.subject.other |
image analysis |
en |
dc.subject.other |
Kohonen network |
en |
dc.subject.other |
learning |
en |
dc.subject.other |
nuclear magnetic resonance imaging |
en |
dc.subject.other |
nuclear magnetic resonance scanner |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
quantitative analysis |
en |
dc.subject.other |
retina image |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Brain |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Image Processing, Computer-Assisted |
en |
dc.subject.other |
Magnetic Resonance Imaging |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Retina |
en |
dc.subject.other |
Tomography, X-Ray Computed |
en |
dc.title |
Application of Kohonen network for automatic point correspondence in 2D medical images |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compbiomed.2009.04.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compbiomed.2009.04.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, a generalized application of Kohonen Network for automatic point correspondence of unimodal medical images is presented. Given a pair of two-dimensional medical images of the same anatomical region and a set of interest points in one of the images, the algorithm detects effectively the set of corresponding points in the second image, by exploiting the properties of the Kohonen self organizing maps (SOMs) and embedding them in a stochastic optimization framework. The correspondences are established by determining the parameters of local transformations that map the interest points of the first image to their corresponding points in the second image. The parameters of each transformation are computed in an iterative way, using a modification of the competitive learning, as implemented by SOMs. The proposed algorithm was tested on medical imaging data from three different modalities (CT, MR and red-free retinal images) subject to known and unknown transformations. The quantitative results in all cases exhibited sub-pixel accuracy. The algorithm also proved to work efficiently in the case of noise corrupted data. Finally. in comparison to a previously published algorithm that was also based on SOMs, as well as two widely used techniques for detection of point correspondences (template matching and iterative closest point), the proposed algorithm exhibits an improved performance in terms of accuracy and robustness. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers in Biology and Medicine |
en |
dc.identifier.doi |
10.1016/j.compbiomed.2009.04.006 |
en |
dc.identifier.isi |
ISI:000267931000007 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
630 |
en |
dc.identifier.epage |
645 |
en |