HEAL DSpace

Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Asimakopoulou, GE en
dc.contributor.author Kontargyri, VT en
dc.contributor.author Tsekouras, GJ en
dc.contributor.author Asimakopoulou, FE en
dc.contributor.author Gonos, IF en
dc.contributor.author Stathopulos, IA en
dc.date.accessioned 2014-03-01T01:29:52Z
dc.date.available 2014-03-01T01:29:52Z
dc.date.issued 2009 en
dc.identifier.issn 1751-8822 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19390
dc.subject Artificial Neural Network en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Approximation theory en
dc.subject.other Backpropagation en
dc.subject.other Neural networks en
dc.subject.other ANN trainings en
dc.subject.other Artificial neural networks en
dc.subject.other Confidence intervals en
dc.subject.other Correlation indices en
dc.subject.other Critical flashover voltages en
dc.subject.other Crucial parameters en
dc.subject.other Equivalent salt deposit densities en
dc.subject.other Form factors en
dc.subject.other Input variables en
dc.subject.other Optimisation en
dc.subject.other Polluted insulators en
dc.subject.other Re samplings en
dc.subject.other Test sets en
dc.subject.other Training sets en
dc.subject.other Flashover en
dc.title Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators en
heal.type journalArticle en
heal.identifier.primary 10.1049/iet-smt:20080009 en
heal.identifier.secondary http://dx.doi.org/10.1049/iet-smt:20080009 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract To describe an artificial neural network (ANN) methodology in order to estimate the critical flashover voltage on polluted insulators is the objective here. The methodology uses as input variables characteristics of the insulator such as diameter, height, creepage distance, form factor and equivalent salt deposit density, and it estimates the critical flashover voltage based on an ANN. For each ANN training algorithm, an optimisation process is conducted regarding the values of crucial parameters such as the number of neurons and so on using the training set. The success of each algorithm in estimating the critical flashover voltage is measured by the correlation index between the experimental and estimated values for the evaluation set, and finally the ANN with the correlation index closest to 1 is specified. For this ANN and the respective algorithm, the critical flashover voltage of the test set insulators is estimated and the respective confidence intervals are calculated through the re-sampling method. © 2008 The Institution of Engineering and Technology. en
heal.publisher INST ENGINEERING TECHNOLOGY-IET en
heal.journalName IET Science, Measurement and Technology en
dc.identifier.doi 10.1049/iet-smt:20080009 en
dc.identifier.isi ISI:000262874500011 en
dc.identifier.volume 3 en
dc.identifier.issue 1 en
dc.identifier.spage 90 en
dc.identifier.epage 104 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής