HEAL DSpace

Assessing the effect of mass transfer on the formation of HC and CO emissions in HCCI engines, using a multi-zone model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Komninos, NP en
dc.date.accessioned 2014-03-01T01:29:53Z
dc.date.available 2014-03-01T01:29:53Z
dc.date.issued 2009 en
dc.identifier.issn 0196-8904 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19393
dc.subject HCCI en
dc.subject Multi-zone model en
dc.subject Mass transfer en
dc.subject Emissions formation en
dc.subject Hydrocarbons en
dc.subject CO en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Nuclear en
dc.subject.other COMBUSTION en
dc.title Assessing the effect of mass transfer on the formation of HC and CO emissions in HCCI engines, using a multi-zone model en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.enconman.2009.01.026 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.enconman.2009.01.026 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The focus of the present study is to assess the effect of mass transfer on the formation of unburned HC and CO emissions in HCCI engines. A multi-zone model was modified and used for this purpose. The new feature of the multi-zone model is its ability to switch between two distinct simulation modes, i.e. either including or excluding mass transfer between zones. The switch between modes occurs at a user-defined point in the engine closed cycle. Apart from mass transfer, the two modes use identical sub-models for the heat transfer between zones and to the cylinder wall and for combustion simulation, which is modeled using a reduced set of chemical reactions coupled with a chemical kinetics solver. Using the modified multi-zone model, four cases were simulated and compared: one including mass transfer throughout the closed cycle, and three cases whereby mass transfer is neglected after the initiation of the 1st or 2nd heat release or after the completion of main heat release. The simulation results reveal that mass transfer affects the HC and CO accumulated at the colder regions during combustion and governs the HC partial oxidation and CO production during expansion. For the operating conditions studied, neglecting mass transfer during combustion results to an underprediction of HC by as much as 50% and of CO by 45% relative to the case where mass transfer is considered for. Omitting mass transfer only during expansion, results to an overestimation of HC by 9% and to an underestimation of CO by 26%. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName ENERGY CONVERSION AND MANAGEMENT en
dc.identifier.doi 10.1016/j.enconman.2009.01.026 en
dc.identifier.isi ISI:000265370600006 en
dc.identifier.volume 50 en
dc.identifier.issue 5 en
dc.identifier.spage 1192 en
dc.identifier.epage 1201 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής