HEAL DSpace

Asymptotic theory of weighted F-statistics based on ranks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Akritas, MG en
dc.contributor.author Stavropoulos, A en
dc.contributor.author Caroni, C en
dc.date.accessioned 2014-03-01T01:29:54Z
dc.date.available 2014-03-01T01:29:54Z
dc.date.issued 2009 en
dc.identifier.issn 1048-5252 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19398
dc.subject Asymptotic theory en
dc.subject Factorial designs en
dc.subject Nonparametric hypotheses en
dc.subject Nonparametric models en
dc.subject Weighted F rank statistics en
dc.subject.classification Statistics & Probability en
dc.subject.other UNBALANCED FACTORIAL-DESIGNS en
dc.subject.other NONPARAMETRIC HYPOTHESES en
dc.subject.other TESTS en
dc.title Asymptotic theory of weighted F-statistics based on ranks en
heal.type journalArticle en
heal.identifier.primary 10.1080/10485250802485528 en
heal.identifier.secondary http://dx.doi.org/10.1080/10485250802485528 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Using subspaces to describe the nonparametric null hypotheses introduced in Akritas and Arnold [Fully nonparametric hypotheses for factorial designs I: multivariate repeated measures designs, J. Amer. Statist. Assoc. 89 (1994), pp. 336-343.], leads to a natural extension of the models and the class of nonparametric hypotheses considered there. Nonparametric versions of all saturated or unsaturated parametric models for factorial designs, as well as nonparametric versions of all parametric hypotheses considered in such contexts, are included in the new formulation. To test these new hypotheses we introduce a new family of (mid-)rank statistics. The new statistics are modelled after the weighted F-statistics and are appropriate for (possibly) unbalanced designs with independent observations that can be heteroscedastic. Being rank versions of likelihood ratio statistics, the proposed statistics apply in situations where the Wald-type rank statistics of Akritas, Arnold and Brunner [Nonparametric hypotheses and rank statistics for unbalanced factorial designs, J. Amer. Statist. Assoc. 92 (1997), pp. 258-265.] have not been extended and are at least as efficient in the cases where both apply. We show that the new rank statistics converge in distribution to central chi-squared distributions under their respective null hypotheses. Finding the asymptotic distribution of statistics without a closed form expression requires a novel approach, which we introduce. A simulation study compares the achieved level and power of the new statistics with a number of competing procedures. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName Journal of Nonparametric Statistics en
dc.identifier.doi 10.1080/10485250802485528 en
dc.identifier.isi ISI:000262515100004 en
dc.identifier.volume 21 en
dc.identifier.issue 2 en
dc.identifier.spage 177 en
dc.identifier.epage 191 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής