dc.contributor.author |
Panagopoulos, M |
en |
dc.contributor.author |
Papaodysseus, C |
en |
dc.contributor.author |
Rousopoulos, P |
en |
dc.contributor.author |
Dafi, D |
en |
dc.contributor.author |
Tracy, S |
en |
dc.date.accessioned |
2014-03-01T01:29:54Z |
|
dc.date.available |
2014-03-01T01:29:54Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0162-8828 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19399 |
|
dc.subject |
Ancient Greek inscription classification |
en |
dc.subject |
Archaeology |
en |
dc.subject |
Feature modeling |
en |
dc.subject |
Handwriting analysis |
en |
dc.subject |
Handwriting classification |
en |
dc.subject |
Pattern recognition |
en |
dc.subject |
Writer identification |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Ancient Greek inscription classification |
en |
dc.subject.other |
Archaeology |
en |
dc.subject.other |
Feature modeling |
en |
dc.subject.other |
Handwriting analysis |
en |
dc.subject.other |
Handwriting classification |
en |
dc.subject.other |
Writer identification |
en |
dc.subject.other |
History |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.title |
Automatic writer identification of ancient greek inscriptions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPAMI.2008.201 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPAMI.2008.201 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper introduces a novel methodology for the classification of ancient Greek inscriptions according to the writer who carved them. Inscription writer identification is crucial for dating the written content, which in turn is of fundamental importance in the sciences of history and archaeology. To achieve this, we first compute an ideal or ""platonic"" prototype for the letters of each inscription separately. Next, statistical criteria are introduced to reject the hypothesis that two inscriptions are carved by the same writer. In this way, we can determine the number of distinct writers who carved a given ensemble of inscriptions. Next, maximum likelihood considerations are employed to attribute all inscriptions in the collection to the respective writers. The method has been applied to 24 Ancient Athenian inscriptions and attributed these inscriptions to six different identified hands in full accordance with expert epigraphists' opinions. © 2009 IEEE. |
en |
heal.publisher |
IEEE COMPUTER SOC |
en |
heal.journalName |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
en |
dc.identifier.doi |
10.1109/TPAMI.2008.201 |
en |
dc.identifier.isi |
ISI:000267050600005 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1404 |
en |
dc.identifier.epage |
1414 |
en |