dc.contributor.author |
Lefkimmiatis, S |
en |
dc.contributor.author |
Maragos, P |
en |
dc.contributor.author |
Papandreou, G |
en |
dc.date.accessioned |
2014-03-01T01:29:54Z |
|
dc.date.available |
2014-03-01T01:29:54Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1057-7149 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19400 |
|
dc.subject |
Bayesian inference |
en |
dc.subject |
Expectation-maximization (EM) algorithm |
en |
dc.subject |
Hidden Markov tree (HMT) |
en |
dc.subject |
Photon-limited imaging |
en |
dc.subject |
Poisson processes |
en |
dc.subject |
Poisson-Haar decomposition |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Bayesian inference |
en |
dc.subject.other |
Expectation-maximization (EM) algorithm |
en |
dc.subject.other |
Hidden Markov tree (HMT) |
en |
dc.subject.other |
Photon-limited imaging |
en |
dc.subject.other |
Poisson processes |
en |
dc.subject.other |
Poisson-Haar decomposition |
en |
dc.subject.other |
Bayesian networks |
en |
dc.subject.other |
Decomposition |
en |
dc.subject.other |
Edge detection |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Inference engines |
en |
dc.subject.other |
Labels |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Maximum principle |
en |
dc.subject.other |
Mixtures |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Photons |
en |
dc.subject.other |
Poisson equation |
en |
dc.subject.other |
Poisson distribution |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Image Analysis |
en |
dc.subject.other |
Mathematical Analysis |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
Bayes theorem |
en |
dc.subject.other |
image processing |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
optics |
en |
dc.subject.other |
Poisson distribution |
en |
dc.subject.other |
probability |
en |
dc.subject.other |
statistical model |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Bayes Theorem |
en |
dc.subject.other |
Image Processing, Computer-Assisted |
en |
dc.subject.other |
Markov Chains |
en |
dc.subject.other |
Models, Statistical |
en |
dc.subject.other |
Optics and Photonics |
en |
dc.subject.other |
Poisson Distribution |
en |
dc.title |
Bayesian inference on multiscale models for poisson intensity estimation: Applications to photon-limited image denoising |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TIP.2009.2022008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TIP.2009.2022008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques. © 2009 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Image Processing |
en |
dc.identifier.doi |
10.1109/TIP.2009.2022008 |
en |
dc.identifier.isi |
ISI:000268033300004 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1724 |
en |
dc.identifier.epage |
1741 |
en |