HEAL DSpace

Bayesian inference on multiscale models for poisson intensity estimation: Applications to photon-limited image denoising

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lefkimmiatis, S en
dc.contributor.author Maragos, P en
dc.contributor.author Papandreou, G en
dc.date.accessioned 2014-03-01T01:29:54Z
dc.date.available 2014-03-01T01:29:54Z
dc.date.issued 2009 en
dc.identifier.issn 1057-7149 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19400
dc.subject Bayesian inference en
dc.subject Expectation-maximization (EM) algorithm en
dc.subject Hidden Markov tree (HMT) en
dc.subject Photon-limited imaging en
dc.subject Poisson processes en
dc.subject Poisson-Haar decomposition en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Bayesian inference en
dc.subject.other Expectation-maximization (EM) algorithm en
dc.subject.other Hidden Markov tree (HMT) en
dc.subject.other Photon-limited imaging en
dc.subject.other Poisson processes en
dc.subject.other Poisson-Haar decomposition en
dc.subject.other Bayesian networks en
dc.subject.other Decomposition en
dc.subject.other Edge detection en
dc.subject.other Hidden Markov models en
dc.subject.other Image segmentation en
dc.subject.other Inference engines en
dc.subject.other Labels en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Maximum principle en
dc.subject.other Mixtures en
dc.subject.other Optimization en
dc.subject.other Photons en
dc.subject.other Poisson equation en
dc.subject.other Poisson distribution en
dc.subject.other Algorithms en
dc.subject.other Image Analysis en
dc.subject.other Mathematical Analysis en
dc.subject.other Optimization en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other Bayes theorem en
dc.subject.other image processing en
dc.subject.other methodology en
dc.subject.other optics en
dc.subject.other Poisson distribution en
dc.subject.other probability en
dc.subject.other statistical model en
dc.subject.other Algorithms en
dc.subject.other Bayes Theorem en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Markov Chains en
dc.subject.other Models, Statistical en
dc.subject.other Optics and Photonics en
dc.subject.other Poisson Distribution en
dc.title Bayesian inference on multiscale models for poisson intensity estimation: Applications to photon-limited image denoising en
heal.type journalArticle en
heal.identifier.primary 10.1109/TIP.2009.2022008 en
heal.identifier.secondary http://dx.doi.org/10.1109/TIP.2009.2022008 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques. © 2009 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Image Processing en
dc.identifier.doi 10.1109/TIP.2009.2022008 en
dc.identifier.isi ISI:000268033300004 en
dc.identifier.volume 18 en
dc.identifier.issue 8 en
dc.identifier.spage 1724 en
dc.identifier.epage 1741 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής