HEAL DSpace

Bayesian variable selection using cost-adjusted BIC, with application to cost-effective measurement of quality of health care

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fouskakis, D en
dc.contributor.author Ntzoufras, I en
dc.contributor.author Draper, D en
dc.date.accessioned 2014-03-01T01:29:54Z
dc.date.available 2014-03-01T01:29:54Z
dc.date.issued 2009 en
dc.identifier.issn 1932-6157 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19402
dc.subject Bayesian information criterion (BIC) en
dc.subject Cost-adjusted BIC en
dc.subject Cost-benefit analysis en
dc.subject Input-output analysis en
dc.subject Laplace approximation en
dc.subject MCMC model composition (MC3) en
dc.subject Quality of health care en
dc.subject Reversible-jump Markov chain Monte Carlo (RJMCMC) methods en
dc.subject Sickness at hospital admission en
dc.subject.other PROSPECTIVE PAYMENT SYSTEM en
dc.subject.other GENERALIZED LINEAR-MODELS en
dc.subject.other STOCHASTIC OPTIMIZATION en
dc.subject.other PRIOR DISTRIBUTIONS en
dc.subject.other LINDLEY PARADOX en
dc.subject.other PERFORMANCE en
dc.subject.other PROVIDERS en
dc.subject.other INFERENCE en
dc.subject.other POLICY en
dc.title Bayesian variable selection using cost-adjusted BIC, with application to cost-effective measurement of quality of health care en
heal.type journalArticle en
heal.identifier.primary 10.1214/08-AOAS207 en
heal.identifier.secondary http://dx.doi.org/10.1214/08-AOAS207 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In the field of quality of health care measurement, one approach to assessing patient sickness at admission involves a logistic regression of mortality within 30 days of admission on a fairly large number of sickness indicators (on the order of 100) to construct a sickness scale, employing classical variable selection methods to find an ""optimal"" subset of 10-20 indicators. Such ""benefit-only"" methods ignore the considerable differences among the sickness indicators in cost of data collection, an issue that is crucial when admission sickness is used to drive programs (now implemented or under consideration in several countries, including the U.S. and U.K.) that attempt to identify substandard hospitals by comparing observed and expected mortality rates (given admission sickness). When both data-collection cost and accuracy of prediction of 30-day mortality are considered, a large variable-selection problem arises in which costly variables that do not predict well enough should be omitted from the final scale. In this paper (a) we develop a method for solving this problem based on posterior model odds, arising from a prior distribution that (1) accounts for the cost of each variable and (2) results in a set of posterior model probabilities that corresponds to a generalized cost-adjusted version of the Bayesian information criterion (BIC), and (b) we compare this method with a decision-theoretic cost-benefit approach based on maximizing expected utility. We use reversible-jump Markov chain Monte Carlo (RJMCMC) methods to search the model space, and we check the stability of our findings with two variants of the MCMC model composition (MC3) algorithm. We find substantial agreement between the decision-theoretic and cost-adjusted-BIC methods; the latter provides a principled approach to performing a cost-benefit trade-off that avoids ambiguities in identification of an appropriate utility structure. Our cost-benefit approach results in a set of models with a noticeable reduction in cost and dimensionality, and only a minor decrease in predictive performance, when compared with models arising from benefit-only analyses. © Institute of Mathematical Statistics, 2009. en
heal.publisher INST MATHEMATICAL STATISTICS en
heal.journalName Annals of Applied Statistics en
dc.identifier.doi 10.1214/08-AOAS207 en
dc.identifier.isi ISI:000271979600008 en
dc.identifier.volume 3 en
dc.identifier.issue 2 en
dc.identifier.spage 663 en
dc.identifier.epage 690 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής