HEAL DSpace

Biomechanical and histological characteristics of passive esophagus: Experimental investigation and comparative constitutive modeling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stavropoulou, EA en
dc.contributor.author Dafalias, YF en
dc.contributor.author Sokolis, DP en
dc.date.accessioned 2014-03-01T01:29:55Z
dc.date.available 2014-03-01T01:29:55Z
dc.date.issued 2009 en
dc.identifier.issn 0021-9290 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19409
dc.subject Anisotropy en
dc.subject Histology en
dc.subject Inflation/extension en
dc.subject Mucosa-submucosa en
dc.subject Muscle en
dc.subject Strain-energy function en
dc.subject.classification Biophysics en
dc.subject.classification Engineering, Biomedical en
dc.subject.other Biomechanical analysis en
dc.subject.other Biomechanical properties en
dc.subject.other Biphasic en
dc.subject.other Collagen content en
dc.subject.other Constitutive modeling en
dc.subject.other Device application en
dc.subject.other Esophageal tissues en
dc.subject.other Experimental investigations en
dc.subject.other Exponential form en
dc.subject.other Force data en
dc.subject.other Geometrical analysis en
dc.subject.other Histological observations en
dc.subject.other Inflation/extension en
dc.subject.other Longitudinal stretch en
dc.subject.other Material parameter en
dc.subject.other Muscle layers en
dc.subject.other Muscle strain en
dc.subject.other Optimal design en
dc.subject.other Parameterized en
dc.subject.other Pseudoelastic response en
dc.subject.other Soft tissue en
dc.subject.other Strain energy functions en
dc.subject.other Zero-stress state en
dc.subject.other Anisotropy en
dc.subject.other Biological radiation effects en
dc.subject.other Biomechanics en
dc.subject.other Collagen en
dc.subject.other Glycoproteins en
dc.subject.other Histology en
dc.subject.other Medical problems en
dc.subject.other Strain energy en
dc.subject.other Muscle en
dc.subject.other collagen en
dc.subject.other elastin en
dc.subject.other animal tissue en
dc.subject.other article en
dc.subject.other biomechanics en
dc.subject.other elasticity en
dc.subject.other esophagus function en
dc.subject.other esophagus mucosa en
dc.subject.other histology en
dc.subject.other male en
dc.subject.other mathematical analysis en
dc.subject.other mathematical model en
dc.subject.other muscle contraction en
dc.subject.other nonhuman en
dc.subject.other passive movement en
dc.subject.other priority journal en
dc.subject.other rabbit en
dc.subject.other rigidity en
dc.subject.other Animals en
dc.subject.other Anisotropy en
dc.subject.other Computer Simulation en
dc.subject.other Elastic Modulus en
dc.subject.other Esophagus en
dc.subject.other Male en
dc.subject.other Models, Biological en
dc.subject.other Rabbits en
dc.subject.other Stress, Mechanical en
dc.subject.other Tensile Strength en
dc.title Biomechanical and histological characteristics of passive esophagus: Experimental investigation and comparative constitutive modeling en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jbiomech.2009.08.018 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jbiomech.2009.08.018 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Information on the passive biomechanical properties of two-layered esophagus is still limited, although this would enhance our understanding of its physiology/pathophysiology and help to address problems in surgery, medical-device applications, and for the optimal design of prostheses. In this study, rabbit esophagi were excised and dissected into mucosa-submucosa and muscle layers that were submitted to histological quantification of elastin and collagen content and orientation, as well as to inflation-extension testing and geometrical analysis, i.e. delineation of the zero-stress state serving as a reference configuration for biomechanical analysis. The pressure-radius data of both layers displayed a monotonically rising slope with inflating pressure, unlike the sigma shape characterizing elastin-rich tissues, for which biphasic constitutive models were initially postulated. Three phenomenological expressions of strain-energy function (SEF), commonly appearing in soft-tissue biomechanics literature, were used in an attempt to model the pseudoelastic response of esophageal tissue, namely the exponential Fung-type SEF, and the combined neo-Hookean (isotropic) or quadratic (anisotropic) and exponential Fung-type SEF. Accurate fits were attained for the pressure-radius-force data, spanning a wide range of longitudinal stretch ratios, when using the exponential form: the biphasic SEFs failed to generate improved fits, being also over-parameterized. According to the calculated material parameters, mucosa-submucosa was stiffer than muscle in both directions, justified by our histological observation of increased collagen content in that layer, and tissue was stiffer longitudinally, substantiated by the increased elastin and collagen contents and their preferential alignment towards that direction. Our results demonstrate that the passive response of esophagus is best modeled with an exponential Fung-type SEF. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Journal of Biomechanics en
dc.identifier.doi 10.1016/j.jbiomech.2009.08.018 en
dc.identifier.isi ISI:000273135200005 en
dc.identifier.volume 42 en
dc.identifier.issue 16 en
dc.identifier.spage 2654 en
dc.identifier.epage 2663 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής