dc.contributor.author |
Karambas, TV |
en |
dc.contributor.author |
Memos, CD |
en |
dc.date.accessioned |
2014-03-01T01:29:57Z |
|
dc.date.available |
2014-03-01T01:29:57Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0733-950X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19412 |
|
dc.subject |
Boussinesq equations |
en |
dc.subject |
Fourier analysis |
en |
dc.subject |
Numerical models |
en |
dc.subject |
Water waves |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Ocean |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Boussinesq |
en |
dc.subject.other |
Boussinesq equations |
en |
dc.subject.other |
Boussinesq model |
en |
dc.subject.other |
Convolution integrals |
en |
dc.subject.other |
Dispersive waves |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Explicit scheme |
en |
dc.subject.other |
Finite difference |
en |
dc.subject.other |
Free surface elevations |
en |
dc.subject.other |
Horizontal velocity |
en |
dc.subject.other |
Impulse function |
en |
dc.subject.other |
Irregular waves |
en |
dc.subject.other |
Momentum equation |
en |
dc.subject.other |
Nonlinear dispersive wave propagation |
en |
dc.subject.other |
Nonlinear waves |
en |
dc.subject.other |
Numerical integrations |
en |
dc.subject.other |
Numerical models |
en |
dc.subject.other |
Numerical solution |
en |
dc.subject.other |
One frequency |
en |
dc.subject.other |
Shallow waters |
en |
dc.subject.other |
Sloping beaches |
en |
dc.subject.other |
System of equations |
en |
dc.subject.other |
Water depth |
en |
dc.subject.other |
Convolution |
en |
dc.subject.other |
Fourier analysis |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Two dimensional |
en |
dc.subject.other |
Water waves |
en |
dc.subject.other |
Wave propagation |
en |
dc.subject.other |
Water analysis |
en |
dc.subject.other |
Boussinesq equation |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
finite difference method |
en |
dc.subject.other |
free surface flow |
en |
dc.subject.other |
nonlinearity |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
theoretical study |
en |
dc.subject.other |
water depth |
en |
dc.subject.other |
water wave |
en |
dc.subject.other |
wave dispersion |
en |
dc.subject.other |
wave equation |
en |
dc.subject.other |
wave propagation |
en |
dc.subject.other |
wave velocity |
en |
dc.title |
Boussinesq model for weakly nonlinear fully dispersive water waves |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)0733-950X(2009)135:5(187) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)0733-950X(2009)135:5(187) |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In the present work a new Boussinesq dispersive wave propagation model is proposed. The model is based on a system of equations expressed in terms of the free-surface elevation and the depth-averaged horizontal velocities. The approach is developed for fully dispersive and weakly nonlinear irregular waves propagating over any constant water depth in two horizontal dimensions, but it can also be applied in mildly sloping beaches with considerable accuracy. The model in its two-dimensional formulation involves in total five terms in each momentum equation, including the classical shallow water terms and only one frequency dispersion term. The latter is expressed through convolution integrals, which are estimated using appropriate impulse functions. The formulation is fully explicit in space and thus no inversion is required for the numerical solution. The model is applied to simulate the propagation of regular and irregular waves using a simple explicit scheme of finite differences. Numerical integration of a convolution integral is also required. The results of the simulations are compared with experimental data, as well as with linear and nonlinear wave theory. The comparisons show that the method is capable of simulating weakly nonlinear dispersive wave propagation over finite constant or slowly diminishing water depth in a satisfactory way. © 2009 ASCE. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Waterway, Port, Coastal and Ocean Engineering |
en |
dc.identifier.doi |
10.1061/(ASCE)0733-950X(2009)135:5(187) |
en |
dc.identifier.isi |
ISI:000269061500001 |
en |
dc.identifier.volume |
135 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
187 |
en |
dc.identifier.epage |
199 |
en |