HEAL DSpace

Buckling analysis of imperfect shells with stochastic non-Gaussian material and thickness properties

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, V en
dc.contributor.author Stefanou, G en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:29:57Z
dc.date.available 2014-03-01T01:29:57Z
dc.date.issued 2009 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19413
dc.subject Buckling analysis en
dc.subject Non-Gaussian stochastic fields en
dc.subject Nonlinear shell finite element en
dc.subject Random imperfections en
dc.subject Spectral representation en
dc.subject.classification Mechanics en
dc.subject.other Buckling analysis en
dc.subject.other Non-Gaussian stochastic fields en
dc.subject.other Nonlinear shell finite element en
dc.subject.other Random imperfections en
dc.subject.other Spectral representation en
dc.subject.other Elastic moduli en
dc.subject.other Finite element method en
dc.subject.other Gaussian distribution en
dc.subject.other Gaussian noise (electronic) en
dc.subject.other Monte Carlo methods en
dc.subject.other Random processes en
dc.subject.other Shells (structures) en
dc.subject.other Systems engineering en
dc.subject.other Uncertainty analysis en
dc.subject.other Buckling en
dc.title Buckling analysis of imperfect shells with stochastic non-Gaussian material and thickness properties en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2009.03.006 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2009.03.006 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this paper, the effect of material and thickness spatial variation on the buckling load of isotropic shells with random initial geometric imperfections is investigated. To this purpose, a random spatial variability of the elastic modulus as well as of the thickness of the shell is introduced in addition to the random initial geometric deviations of the shell structure from its perfect geometry. The main novelty of this paper compared to previous works is that a non-Gaussian assumption is made for the distribution of the two aforementioned uncertain parameters i.e. the modulus of elasticity and the shell thickness which are described by two-dimensional uni-variate (2D-1V) homogeneous non-Gaussian stochastic fields. The initial geometric imperfections are described as a 2D-1V Gaussian non-homogeneous stochastic field with properties derived from corresponding experimental measurements. Numerical examples are presented focusing on the influence of the non-Gaussian assumption on the variability of the buckling load, which is calculated by means of the Monte Carlo Simulation method. It is shown that the choice of the marginal probability distribution for the description of the material and thickness variability is crucial since it affects significantly the statistics of the buckling load of imperfection sensitive shell-type structures. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2009.03.006 en
dc.identifier.isi ISI:000266045800004 en
dc.identifier.volume 46 en
dc.identifier.issue 14-15 en
dc.identifier.spage 2800 en
dc.identifier.epage 2808 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής