dc.contributor.author |
Papadopoulos, V |
en |
dc.contributor.author |
Stefanou, G |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:29:57Z |
|
dc.date.available |
2014-03-01T01:29:57Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19413 |
|
dc.subject |
Buckling analysis |
en |
dc.subject |
Non-Gaussian stochastic fields |
en |
dc.subject |
Nonlinear shell finite element |
en |
dc.subject |
Random imperfections |
en |
dc.subject |
Spectral representation |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Buckling analysis |
en |
dc.subject.other |
Non-Gaussian stochastic fields |
en |
dc.subject.other |
Nonlinear shell finite element |
en |
dc.subject.other |
Random imperfections |
en |
dc.subject.other |
Spectral representation |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Gaussian distribution |
en |
dc.subject.other |
Gaussian noise (electronic) |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Shells (structures) |
en |
dc.subject.other |
Systems engineering |
en |
dc.subject.other |
Uncertainty analysis |
en |
dc.subject.other |
Buckling |
en |
dc.title |
Buckling analysis of imperfect shells with stochastic non-Gaussian material and thickness properties |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2009.03.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2009.03.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, the effect of material and thickness spatial variation on the buckling load of isotropic shells with random initial geometric imperfections is investigated. To this purpose, a random spatial variability of the elastic modulus as well as of the thickness of the shell is introduced in addition to the random initial geometric deviations of the shell structure from its perfect geometry. The main novelty of this paper compared to previous works is that a non-Gaussian assumption is made for the distribution of the two aforementioned uncertain parameters i.e. the modulus of elasticity and the shell thickness which are described by two-dimensional uni-variate (2D-1V) homogeneous non-Gaussian stochastic fields. The initial geometric imperfections are described as a 2D-1V Gaussian non-homogeneous stochastic field with properties derived from corresponding experimental measurements. Numerical examples are presented focusing on the influence of the non-Gaussian assumption on the variability of the buckling load, which is calculated by means of the Monte Carlo Simulation method. It is shown that the choice of the marginal probability distribution for the description of the material and thickness variability is crucial since it affects significantly the statistics of the buckling load of imperfection sensitive shell-type structures. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2009.03.006 |
en |
dc.identifier.isi |
ISI:000266045800004 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
14-15 |
en |
dc.identifier.spage |
2800 |
en |
dc.identifier.epage |
2808 |
en |