HEAL DSpace

Calibration of dynamic traffic assignment models with point-to-point traffic surveillance

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vaze, V en
dc.contributor.author Antoniou, C en
dc.contributor.author Wen, Y en
dc.contributor.author Ben-Akiva, M en
dc.date.accessioned 2014-03-01T01:29:57Z
dc.date.available 2014-03-01T01:29:57Z
dc.date.issued 2009 en
dc.identifier.issn 0361-1981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19415
dc.subject Dynamic Traffic Assignment en
dc.subject Traffic Surveillance en
dc.subject Point To Point en
dc.subject.classification Engineering, Civil en
dc.subject.classification Transportation en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Automatic vehicle identification en
dc.subject.other Calibration accuracy en
dc.subject.other Calibration problems en
dc.subject.other Demand and supply en
dc.subject.other Dynamic traffic assignments en
dc.subject.other Estimation results en
dc.subject.other Gradient approximation en
dc.subject.other Joint calibration en
dc.subject.other Metaheuristic en
dc.subject.other Model parameters en
dc.subject.other New York en
dc.subject.other Path search en
dc.subject.other Point sensors en
dc.subject.other Random searches en
dc.subject.other Real traffic en
dc.subject.other Sensing technology en
dc.subject.other Stochastic optimizations en
dc.subject.other Synthetic study en
dc.subject.other Traffic data en
dc.subject.other Traffic management en
dc.subject.other Traffic simulators en
dc.subject.other Traffic surveillance en
dc.subject.other Travel information en
dc.subject.other Travel time measurements en
dc.subject.other Approximation algorithms en
dc.subject.other Calibration en
dc.subject.other Competition en
dc.subject.other Highway traffic control en
dc.subject.other Time measurement en
dc.subject.other Vehicle actuated signals en
dc.subject.other Traffic surveys en
dc.title Calibration of dynamic traffic assignment models with point-to-point traffic surveillance en
heal.type journalArticle en
heal.identifier.primary 10.3141/2090-01 en
heal.identifier.secondary http://dx.doi.org/10.3141/2090-01 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Accurate calibration of demand and supply simulators within a dynamic traffic assignment system is critical for consistent travel information and efficient traffic management. Emerging traffic surveillance devices such as automatic vehicle identification (AVI) technology provide a rich source of disaggregated traffic data. A methodology for the joint calibration of demand and supply model parameters using travel time measurements obtained from these emerging traffic-sensing technologies is presented. The calibration problem has been formulated as a stochastic optimization framework. Two different algorithms are used for solving the calibration problem: a gradient approximation-based path search method and a random search metaheuristic. The methodology is first tested by using a small synthetic study network to illustrate its effectiveness and obtain insight into its operation. The methodology is further applied to a real traffic network in Lower Westchester County, New York, to demonstrate its scalability. The estimation results are tested by using a calibrated microscopic traffic simulator. The results are compared with the base case of calibration by the use of only the conventional point sensor data. The results indicate that use of AVI data significantly improves calibration accuracy. en
heal.publisher NATL ACAD SCIENCES en
heal.journalName Transportation Research Record en
dc.identifier.doi 10.3141/2090-01 en
dc.identifier.isi ISI:000268737100001 en
dc.identifier.issue 2090 en
dc.identifier.spage 1 en
dc.identifier.epage 9 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής