HEAL DSpace

Closed-form solution for plastic zone formation around a circular tunnel in half-space obeying Mohr-Coulomb criterion

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Massinas, SA en
dc.contributor.author Sakellariou, MG en
dc.date.accessioned 2014-03-01T01:29:59Z
dc.date.available 2014-03-01T01:29:59Z
dc.date.issued 2009 en
dc.identifier.issn 0016-8505 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19433
dc.subject Design en
dc.subject Excavation en
dc.subject Plasticity en
dc.subject Soft rocks en
dc.subject Stress analysis en
dc.subject Tunnels en
dc.subject.classification Engineering, Geological en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.other PLANE en
dc.title Closed-form solution for plastic zone formation around a circular tunnel in half-space obeying Mohr-Coulomb criterion en
heal.type journalArticle en
heal.identifier.primary 10.1680/geot.8.069 en
heal.identifier.secondary http://dx.doi.org/10.1680/geot.8.069 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A closed-form solution for the problem of the plastic zone and stress distribution around a circular tunnel in an elastic-plastic half space, derived using bipolar coordinates, is the main scope of this paper. By assuming a uniformly applied surface loading, the whole semi-infinite space is under uniform pressure: thus the gravitational effect is neglected, while the plastic zone formation around the circular tunnel is controlled by the applied internal support pressure. The plastic behaviour of the half space is described by the Mohr-Coulomb yield criterion, and the soil is assumed to be homogeneous and isotropic with earth pressure coefficient K-0 equal to unity. The critical internal pressure, where the initial yielding occurs at the tunnel wall, is derived, along with equations describing the plastic zone and plastic stresses. These equations are functions of the soil properties, which are cohesion and friction angle. This derived closed-form solution is validated through mathematical and computational analysis, and is also compared with numerical models under gravitational load, solved using the finite difference method. This innovative closed-form solution has a significant impact in practical problems by introducing a simple and effective method that allows the quick estimation of a shallow tunnel's behaviour, since it gives, in principle, the opportunity for quick and accurate calculation of the plastic zone and stress distribution around the circular tunnel. By applying different values of support pressure, the tunnel designer can easily evaluate the feasibility of different design alternatives, such as shotcrete shell and tunnel-boring machine support pressure. As a result, an efficient and innovative method of solving shallow tunnelling problems in cohesive-frictional soil is introduced. en
heal.publisher THOMAS TELFORD PUBLISHING en
heal.journalName Geotechnique en
dc.identifier.doi 10.1680/geot.8.069 en
dc.identifier.isi ISI:000271485200005 en
dc.identifier.volume 59 en
dc.identifier.issue 8 en
dc.identifier.spage 691 en
dc.identifier.epage 701 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής