HEAL DSpace

Combining Gaussian Mixture models and Support Vector Machines for relevance feedback in content based image retrieval

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marakakis, A en
dc.contributor.author Galatsanos, N en
dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:29:59Z
dc.date.available 2014-03-01T01:29:59Z
dc.date.issued 2009 en
dc.identifier.issn 15715736 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19439
dc.subject Content Based Image Retrieval en
dc.subject Distance Measure en
dc.subject Gaussian Mixture en
dc.subject Gaussian Mixture Model en
dc.subject Image Features en
dc.subject Image Modeling en
dc.subject Kernel Function en
dc.subject Model Specification en
dc.subject Numerical Experiment en
dc.subject Probability Density Function en
dc.subject Relevance Feedback en
dc.subject Support Vector Machine en
dc.title Combining Gaussian Mixture models and Support Vector Machines for relevance feedback in content based image retrieval en
heal.type journalArticle en
heal.identifier.primary 10.1007/978-1-4419-0221-4_30 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-1-4419-0221-4_30 en
heal.publicationDate 2009 en
heal.abstract A relevance feedback (RF) approach for content based image retrieval (CBIR) is proposed, which combines Support Vector Machines (SVMs) with Gaussian Mixture (GM) models. Specifically, it constructs GM models of the image features distribution to describe the image content and trains an SVM classifier to distinguish between the relevant and irrelevant images according to the preferences of the user. The method is based on distance measures between probability density functions (pdfs), which can be computed in closed form for GM models. In particular, these distance measures are used to define a new SVM kernel function expressing the similarity between the corresponding images modeled as GMs. Using this kernel function and the user provided feedback examples, an SVM classifier is trained in each RF round, resulting in an updated ranking of the database images. Numerical experiments are presented that demonstrate the merits of the proposed relevance feedback methodology and the advantages of using GMs for image modeling in the RF framework. © 2009 International Federation for Information Processing. en
heal.journalName IFIP International Federation for Information Processing en
dc.identifier.doi 10.1007/978-1-4419-0221-4_30 en
dc.identifier.volume 296 en
dc.identifier.spage 249 en
dc.identifier.epage 258 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής