HEAL DSpace

Composite bars of arbitrary cross section in nonlinear Elastic nonuniform torsion by BEM

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Tsipiras, VJ en
dc.date.accessioned 2014-03-01T01:30:00Z
dc.date.available 2014-03-01T01:30:00Z
dc.date.issued 2009 en
dc.identifier.issn 0733-9399 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19447
dc.subject Bars en
dc.subject Boundaries en
dc.subject Cross sections en
dc.subject Geometry en
dc.subject Shear stress en
dc.subject Torsion en
dc.subject Warpage en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Analog equation methods en
dc.subject.other Arbitrary cross section en
dc.subject.other Bars en
dc.subject.other Beam axis en
dc.subject.other Boundaries en
dc.subject.other Composite bars en
dc.subject.other Cross section en
dc.subject.other Cylindrical bars en
dc.subject.other Domain discretization en
dc.subject.other Elastic nonuniform torsion en
dc.subject.other Finite displacement en
dc.subject.other Finite number en
dc.subject.other Finite rotations en
dc.subject.other Geometric non-linear en
dc.subject.other Geometric non-linearity en
dc.subject.other Iterative process en
dc.subject.other Large rotation en
dc.subject.other Longitudinal normal en
dc.subject.other Numerical results en
dc.subject.other Saint-Venant en
dc.subject.other Second orders en
dc.subject.other System of nonlinear equations en
dc.subject.other Torsional constant en
dc.subject.other Torsional rigidity en
dc.subject.other Transverse displacements en
dc.subject.other Warpages en
dc.subject.other Warping function en
dc.subject.other Control nonlinearities en
dc.subject.other Discrete event simulation en
dc.subject.other Nonlinear equations en
dc.subject.other Rigidity en
dc.subject.other Rotation en
dc.subject.other Shear stress en
dc.subject.other Strain en
dc.subject.other Strength of materials en
dc.subject.other Thin walled structures en
dc.subject.other Torsional stress en
dc.subject.other Weaving en
dc.subject.other Boundary element method en
dc.subject.other accuracy assessment en
dc.subject.other analog model en
dc.subject.other boundary element method en
dc.subject.other composite en
dc.subject.other efficiency measurement en
dc.subject.other elasticity en
dc.subject.other geometry en
dc.subject.other nonlinearity en
dc.subject.other rigidity en
dc.subject.other shear stress en
dc.subject.other theoretical study en
dc.subject.other torque en
dc.title Composite bars of arbitrary cross section in nonlinear Elastic nonuniform torsion by BEM en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)EM.1943-7889.0000056 en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000056 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this paper the elastic nonuniform torsion analysis of composite cylindrical bars of arbitrary cross section consisting of materials in contact, each of which can surround a finite number of inclusions, taking into account the effect of geometric nonlinearity is presented employing the boundary element method (BEM). All of the cross section's materials are perfectly bonded together, that is separation is not allowed. The torque-rotation relationship is computed based on the finite displacement (finite rotation) theory, that is the transverse displacement components are expressed so as to be valid for large rotations and the longitudinal normal strain includes the second-order geometric nonlinear term often described as the ""Wagner strain."" The proposed formulation does not stand on the assumption of a thin-walled structure and therefore the cross section's torsional rigidity is evaluated exactly without using the so-called Saint-Venant's torsional constant. The torsional rigidity of the cross section is evaluated directly employing the primary warping function of the cross section depending on its shape. Three boundary value problems with respect to the variable along the beam axis angle of twist, to the primary and to the secondary warping functions are formulated. The first one, employing the Analog Equation Method (a BEM based method), yields a system of nonlinear equations from which the angle of twist is computed by an iterative process. The rest two problems are solved employing a pure BE method. Numerical results are presented to illustrate the method and demonstrate its efficiency and accuracy. The developed procedure retains most of the advantages of a BEM solution over a pure domain discretization method, although it requires domain discretization. © 2009 ASCE. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName Journal of Engineering Mechanics en
dc.identifier.doi 10.1061/(ASCE)EM.1943-7889.0000056 en
dc.identifier.isi ISI:000271912000002 en
dc.identifier.volume 135 en
dc.identifier.issue 12 en
dc.identifier.spage 1354 en
dc.identifier.epage 1367 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής