dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Tsipiras, VJ |
en |
dc.date.accessioned |
2014-03-01T01:30:00Z |
|
dc.date.available |
2014-03-01T01:30:00Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0733-9399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19447 |
|
dc.subject |
Bars |
en |
dc.subject |
Boundaries |
en |
dc.subject |
Cross sections |
en |
dc.subject |
Geometry |
en |
dc.subject |
Shear stress |
en |
dc.subject |
Torsion |
en |
dc.subject |
Warpage |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Arbitrary cross section |
en |
dc.subject.other |
Bars |
en |
dc.subject.other |
Beam axis |
en |
dc.subject.other |
Boundaries |
en |
dc.subject.other |
Composite bars |
en |
dc.subject.other |
Cross section |
en |
dc.subject.other |
Cylindrical bars |
en |
dc.subject.other |
Domain discretization |
en |
dc.subject.other |
Elastic nonuniform torsion |
en |
dc.subject.other |
Finite displacement |
en |
dc.subject.other |
Finite number |
en |
dc.subject.other |
Finite rotations |
en |
dc.subject.other |
Geometric non-linear |
en |
dc.subject.other |
Geometric non-linearity |
en |
dc.subject.other |
Iterative process |
en |
dc.subject.other |
Large rotation |
en |
dc.subject.other |
Longitudinal normal |
en |
dc.subject.other |
Numerical results |
en |
dc.subject.other |
Saint-Venant |
en |
dc.subject.other |
Second orders |
en |
dc.subject.other |
System of nonlinear equations |
en |
dc.subject.other |
Torsional constant |
en |
dc.subject.other |
Torsional rigidity |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Warpages |
en |
dc.subject.other |
Warping function |
en |
dc.subject.other |
Control nonlinearities |
en |
dc.subject.other |
Discrete event simulation |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Rigidity |
en |
dc.subject.other |
Rotation |
en |
dc.subject.other |
Shear stress |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Strength of materials |
en |
dc.subject.other |
Thin walled structures |
en |
dc.subject.other |
Torsional stress |
en |
dc.subject.other |
Weaving |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
accuracy assessment |
en |
dc.subject.other |
analog model |
en |
dc.subject.other |
boundary element method |
en |
dc.subject.other |
composite |
en |
dc.subject.other |
efficiency measurement |
en |
dc.subject.other |
elasticity |
en |
dc.subject.other |
geometry |
en |
dc.subject.other |
nonlinearity |
en |
dc.subject.other |
rigidity |
en |
dc.subject.other |
shear stress |
en |
dc.subject.other |
theoretical study |
en |
dc.subject.other |
torque |
en |
dc.title |
Composite bars of arbitrary cross section in nonlinear Elastic nonuniform torsion by BEM |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)EM.1943-7889.0000056 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000056 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper the elastic nonuniform torsion analysis of composite cylindrical bars of arbitrary cross section consisting of materials in contact, each of which can surround a finite number of inclusions, taking into account the effect of geometric nonlinearity is presented employing the boundary element method (BEM). All of the cross section's materials are perfectly bonded together, that is separation is not allowed. The torque-rotation relationship is computed based on the finite displacement (finite rotation) theory, that is the transverse displacement components are expressed so as to be valid for large rotations and the longitudinal normal strain includes the second-order geometric nonlinear term often described as the ""Wagner strain."" The proposed formulation does not stand on the assumption of a thin-walled structure and therefore the cross section's torsional rigidity is evaluated exactly without using the so-called Saint-Venant's torsional constant. The torsional rigidity of the cross section is evaluated directly employing the primary warping function of the cross section depending on its shape. Three boundary value problems with respect to the variable along the beam axis angle of twist, to the primary and to the secondary warping functions are formulated. The first one, employing the Analog Equation Method (a BEM based method), yields a system of nonlinear equations from which the angle of twist is computed by an iterative process. The rest two problems are solved employing a pure BE method. Numerical results are presented to illustrate the method and demonstrate its efficiency and accuracy. The developed procedure retains most of the advantages of a BEM solution over a pure domain discretization method, although it requires domain discretization. © 2009 ASCE. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Engineering Mechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)EM.1943-7889.0000056 |
en |
dc.identifier.isi |
ISI:000271912000002 |
en |
dc.identifier.volume |
135 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
1354 |
en |
dc.identifier.epage |
1367 |
en |