HEAL DSpace

Concept detection and keyframe extraction using a visual thesaurus

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Spyrou, E en
dc.contributor.author Tolias, G en
dc.contributor.author Mylonas, P en
dc.contributor.author Avrithis, Y en
dc.date.accessioned 2014-03-01T01:30:01Z
dc.date.available 2014-03-01T01:30:01Z
dc.date.issued 2009 en
dc.identifier.issn 1380-7501 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19451
dc.subject Concept detection en
dc.subject Keyframe extraction en
dc.subject Region types en
dc.subject Visual thesaurus en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Information theory en
dc.subject.other Vectors en
dc.subject.other Concept detection en
dc.subject.other Detection performances en
dc.subject.other Key frames en
dc.subject.other Keyframe extraction en
dc.subject.other Keyframe selections en
dc.subject.other Latent Semantic Analysis en
dc.subject.other Material informations en
dc.subject.other Model vectors en
dc.subject.other Region types en
dc.subject.other Selection processes en
dc.subject.other Texture descriptors en
dc.subject.other Very large datums en
dc.subject.other Video analysis en
dc.subject.other Video shots en
dc.subject.other Visual thesaurus en
dc.subject.other Thesauri en
dc.title Concept detection and keyframe extraction using a visual thesaurus en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11042-008-0237-9 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11042-008-0237-9 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract This paper presents a video analysis approach based on concept detection and keyframe extraction employing a visual thesaurus representation. Color and texture descriptors are extracted from coarse regions of each frame and a visual thesaurus is constructed after clustering regions. The clusters, called region types, are used as basis for representing local material information through the construction of a model vector for each frame, which reflects the composition of the image in terms of region types. Model vector representation is used for keyframe selection either in each video shot or across an entire sequence. The selection process ensures that all region types are represented. A number of high-level concept detectors is then trained using global annotation and Latent Semantic Analysis is applied. To enhance detection performance per shot, detection is employed on the selected keyframes of each shot, and a framework is proposed for working on very large data sets. © 2008 Springer Science+Business Media, LLC. en
heal.publisher SPRINGER en
heal.journalName Multimedia Tools and Applications en
dc.identifier.doi 10.1007/s11042-008-0237-9 en
dc.identifier.isi ISI:000262506300002 en
dc.identifier.volume 41 en
dc.identifier.issue 3 en
dc.identifier.spage 337 en
dc.identifier.epage 373 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής