dc.contributor.author |
Agarwal, RP |
en |
dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
O'Regan, D |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:30:01Z |
|
dc.date.available |
2014-03-01T01:30:01Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1687-2762 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19453 |
|
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
NONLINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
MULTIPLE SOLUTIONS |
en |
dc.subject.other |
CHANGING SOLUTIONS |
en |
dc.subject.other |
SOBOLEV |
en |
dc.subject.other |
CONTINUITY |
en |
dc.title |
Constant sign and nodal solutions for problems with the p-Laplacian and a nonsmooth potential using variational techniques |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/2009/820237 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/2009/820237 |
en |
heal.identifier.secondary |
820237 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonlinear elliptic equation driven by the p-Laplacian with a nonsmooth potential (hemivariational inequality) and Dirichlet boundary condition. Using a variational approach based on nonsmooth critical point theory together with the method of upper and lower solutions, we prove the existence of at least three nontrivial smooth solutions: one positive, the second negative, and the third sign changing (nodal solution). Our hypotheses on the nonsmooth potential incorporate in our framework of analysis the so-called asymptotically p-linear problems. Copyright (C) 2009 Ravi P. Agarwal et al. |
en |
heal.publisher |
HINDAWI PUBLISHING CORPORATION |
en |
heal.journalName |
Boundary Value Problems |
en |
dc.identifier.doi |
10.1155/2009/820237 |
en |
dc.identifier.isi |
ISI:000267453500001 |
en |
dc.identifier.volume |
2009 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
32 |
en |