dc.contributor.author |
Karousos, EI |
en |
dc.contributor.author |
Ginnis, AI |
en |
dc.contributor.author |
Kaklis, PD |
en |
dc.date.accessioned |
2014-03-01T01:30:02Z |
|
dc.date.available |
2014-03-01T01:30:02Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0167-8396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19463 |
|
dc.subject |
Fairing |
en |
dc.subject |
Shape |
en |
dc.subject |
Spatial curve |
en |
dc.subject |
Torsion |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Curve fitting |
en |
dc.subject.other |
Image coding |
en |
dc.subject.other |
Splines |
en |
dc.subject.other |
B-spline curves |
en |
dc.subject.other |
Control points |
en |
dc.subject.other |
Convex polyhedrons |
en |
dc.subject.other |
Curve representations |
en |
dc.subject.other |
Fairing |
en |
dc.subject.other |
Free controls |
en |
dc.subject.other |
Parametric domains |
en |
dc.subject.other |
Shape |
en |
dc.subject.other |
Sign constraints |
en |
dc.subject.other |
Spatial curve |
en |
dc.subject.other |
Sub intervals |
en |
dc.subject.other |
Torsion |
en |
dc.subject.other |
Torsional stress |
en |
dc.title |
Controlling torsion sign |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cagd.2008.12.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cagd.2008.12.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
For all curve representations that adopt the control-point paradigm, we present a method for computing the domain, where a User-specified control point is free to move so that the corresponding spatial curve is regular and of constant sign of torsion along a subinterval of its parametric domain of definition. The method is illustrated for a Bezier and a B-spline curve. Furthermore, its utility for fairing curves under torsion-sign constraints in quadratic-programming context, is illustrated for a pair of Bezier curves. Finally, it is shown that the obtained results remain useful if, besides the User-selected free control point, neighboring ones are permitted to vary within convex polyhedra. (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Aided Geometric Design |
en |
dc.identifier.doi |
10.1016/j.cagd.2008.12.003 |
en |
dc.identifier.isi |
ISI:000265813300004 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
396 |
en |
dc.identifier.epage |
411 |
en |