HEAL DSpace

Cycle-averaged phase-space states for the harmonic and the Morse oscillators, and the corresponding uncertainty relations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nicolaides, CA en
dc.contributor.author Constantoudis, V en
dc.date.accessioned 2014-03-01T01:30:05Z
dc.date.available 2014-03-01T01:30:05Z
dc.date.issued 2009 en
dc.identifier.issn 0143-0807 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19468
dc.subject.classification Education, Scientific Disciplines en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.other 5-level en
dc.subject.other Action-angle variables en
dc.subject.other Anharmonicities en
dc.subject.other Average energy en
dc.subject.other Classical trajectories en
dc.subject.other Discrete spectrum en
dc.subject.other Harmonic oscillators en
dc.subject.other Heisenberg uncertainty principle en
dc.subject.other Morse oscillator en
dc.subject.other Numerical computations en
dc.subject.other Phase spaces en
dc.subject.other Quantum mechanical energy en
dc.subject.other Quantum mechanics en
dc.subject.other Time averages en
dc.subject.other Uncertainty relation en
dc.subject.other WKB approximations en
dc.subject.other Approximation theory en
dc.subject.other Phase space methods en
dc.subject.other Schrodinger equation en
dc.subject.other Spectroscopy en
dc.subject.other Oscillators (electronic) en
dc.title Cycle-averaged phase-space states for the harmonic and the Morse oscillators, and the corresponding uncertainty relations en
heal.type journalArticle en
heal.identifier.primary 10.1088/0143-0807/30/6/007 en
heal.identifier.secondary http://dx.doi.org/10.1088/0143-0807/30/6/007 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon(n) = nh nu, n = 0, 1, 2..., and integral integral dp(x) dx = h. By referring to just these two relations, we show how the adoption of cycle-averaged phase-space states (CAPSSs) leads to the quantum mechanical energy spectrum of the HO, < E-n > = (n + 1/2)h nu, n = 0, 1, 2,..., where < E-n > are the average energies, and to < J(n)> = (n + 1/2)h/2 pi, where < J(n)> are the average actions. When anharmonicity to all orders is added in the form of the Morse oscillator (MO), the concept of CAPSS is implemented in terms of action-angle variables and it is shown that the use of < J(n)> of each MO CAPSS also produces the correct discrete spectrum of the MO, again without applying quantum mechanics (QM). In addition, the concept of CAPSS leads to two well-known post-QM relations which are obtained in terms of time averages of the classical trajectories and of < J(n)> : (1) closed integral p dx = 2 pi < J(n)> = (n + 1/2)h, which is the quantum condition of the old quantum theory, albeit with half-integers (i.e. the result of the WKB approximation), and (2) (Delta p Delta x)(n) >= h/4 pi, which is the Heisenberg uncertainty principle. It is shown via numerical computations that, for two MOs, one with intermediate anharmonicity, supporting 22 levels, and another with strong anharmonicity, with 5 levels, the quantities(Delta p Delta x)(n), n = 0, 1,..., 4, which are computed classically for the appropriately chosen trajectories agree very well with the results of computations that apply QM. The introduction of the CAPSS and the concomitant results underline the significance of the concept of the state of the system in physics, both classical and quantum. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName European Journal of Physics en
dc.identifier.doi 10.1088/0143-0807/30/6/007 en
dc.identifier.isi ISI:000271266400011 en
dc.identifier.volume 30 en
dc.identifier.issue 6 en
dc.identifier.spage 1277 en
dc.identifier.epage 1294 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής