dc.contributor.author |
Chortaras, A |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T01:30:06Z |
|
dc.date.available |
2014-03-01T01:30:06Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0218-4885 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19471 |
|
dc.subject |
Fuzzy logic |
en |
dc.subject |
Fuzzy logic programming |
en |
dc.subject |
Knowledge adaptation |
en |
dc.subject |
Logic programming |
en |
dc.subject |
Rule extraction |
en |
dc.subject |
Triangular norms |
en |
dc.subject |
Weighted conjunctions |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Fuzzy logic programming |
en |
dc.subject.other |
Knowledge adaptation |
en |
dc.subject.other |
Rule extraction |
en |
dc.subject.other |
Triangular norms |
en |
dc.subject.other |
Weighted conjunctions |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Information theory |
en |
dc.subject.other |
Logic programming |
en |
dc.subject.other |
Scattering parameters |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Fuzzy logic |
en |
dc.title |
Definition and adaptation of weighted fuzzy logic programs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0218488509005759 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218488509005759 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Fuzzy logic programming has been lately used as a general framework for representing and handling imprecise knowledge. In this paper, we define the syntax and the semantics of definite weighted fuzzy logic programs, which extend definite fuzzy logic programs by allowing the inclusion of different significance weights in the individual atoms that make up the antecedent of a fuzzy logic rule. The weights add expressiveness to a fuzzy logic program and allow the determination of the level up to which an atom in the antecedent of a rule may affect the truth value of its consequent. In describing the semantics of definite weighted fuzzy logic programs we introduce the notion of the generalized weighted fuzzy conjunction operator, which can be regarded as a weighted t-norm based aggregation. We determine the properties of generalized weighted fuzzy conjunction operators and provide several examples. A methodology for constructing generalized weighted fuzzy conjunction operators using generator functions of existing t-norms is also introduced. Finally, a method for setting up a parametric weighted fuzzy logic program and automatically adapting the weights of its rules using a numerical dataset is developed. © 2009 World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems |
en |
dc.identifier.doi |
10.1142/S0218488509005759 |
en |
dc.identifier.isi |
ISI:000263627900006 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
85 |
en |
dc.identifier.epage |
135 |
en |