HEAL DSpace

Dense saliency-based spatiotemporal feature points for action recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rapantzikos, K en
dc.contributor.author Avrithis, Y en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:30:06Z
dc.date.available 2014-03-01T01:30:06Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19472
dc.subject Action Recognition en
dc.subject Information Visualization en
dc.subject Nearest Neighbor Classifier en
dc.subject Video Analysis en
dc.subject Space Time en
dc.subject.other Action recognition en
dc.subject.other Classification framework en
dc.subject.other Data sets en
dc.subject.other Feature point en
dc.subject.other Feature point detection en
dc.subject.other Feature similarities en
dc.subject.other Global minimization en
dc.subject.other Human actions en
dc.subject.other Informativeness en
dc.subject.other Intensity-based en
dc.subject.other Motion activity en
dc.subject.other Multiscales en
dc.subject.other Nearest neighbor classifiers en
dc.subject.other Space-Time Detectors en
dc.subject.other Spatial proximity en
dc.subject.other Spatio temporal features en
dc.subject.other Video analysis en
dc.subject.other Visual aspects en
dc.subject.other Visual comparison en
dc.subject.other Volumetric constraints en
dc.subject.other Volumetric representation en
dc.subject.other Computer vision en
dc.subject.other Detectors en
dc.subject.other Feature extraction en
dc.subject.other Image recognition en
dc.subject.other Technical presentations en
dc.title Dense saliency-based spatiotemporal feature points for action recognition en
heal.type journalArticle en
heal.identifier.primary 10.1109/CVPRW.2009.5206525 en
heal.identifier.secondary http://dx.doi.org/10.1109/CVPRW.2009.5206525 en
heal.identifier.secondary 5206525 en
heal.publicationDate 2009 en
heal.abstract Several spatiotemporal feature point detectors have been recently used in video analysis for action recognition. Feature points are detected using a number of measures, namely saliency, cornerness, periodicity, motion activity etc. Each of these measures is usually intensity-based and provides a different trade-off between density and informativeness. In this paper, we use saliency for feature point detection in videos and incorporate color and motion apart from intensity. Our method uses a multi-scale volumetric representation of the video and involves spatiotemporal operations at the voxel level. Saliency is computed by a global minimization process constrained by pure volumetric constraints, each of them being related to an informative visual aspect, namely spatial proximity, scale and feature similarity (intensity, color, motion). Points are selected as the extrema of the saliency response and prove to balance well between density and informativeness. We provide an intuitive view of the detected points and visual comparisons against state-of-the-art space-time detectors. Our detector outperforms them on the KTH dataset using Nearest- Neighbor classifiers and ranks among the top using different classification frameworks. Statistics and comparisons are also performed on the more difficult Hollywood Human Actions (HOHA) dataset increasing the performance compared to current published results. ©2009 IEEE. en
heal.journalName 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009 en
dc.identifier.doi 10.1109/CVPRW.2009.5206525 en
dc.identifier.spage 1454 en
dc.identifier.epage 1461 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής