dc.contributor.author |
Stamou, AI |
en |
dc.contributor.author |
Theodoridis, G |
en |
dc.contributor.author |
Xanthopoulos, K |
en |
dc.date.accessioned |
2014-03-01T01:30:07Z |
|
dc.date.available |
2014-03-01T01:30:07Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0733-9372 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19479 |
|
dc.subject |
Computational fluid dynamics technique |
en |
dc.subject |
Density currents |
en |
dc.subject |
Flow simulation |
en |
dc.subject |
Sedimentation tanks |
en |
dc.subject |
Simulation models |
en |
dc.subject |
Wastewater treatment |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
CFD models |
en |
dc.subject.other |
Completely-mixed |
en |
dc.subject.other |
Computational fluid dynamics technique |
en |
dc.subject.other |
Density currents |
en |
dc.subject.other |
Design condition |
en |
dc.subject.other |
Empirical design |
en |
dc.subject.other |
Scaling parameter |
en |
dc.subject.other |
Secondary settling tanks |
en |
dc.subject.other |
Sedimentation tanks |
en |
dc.subject.other |
Simulation models |
en |
dc.subject.other |
Suspended solids |
en |
dc.subject.other |
Three-layer |
en |
dc.subject.other |
Type II |
en |
dc.subject.other |
Wastewater treatment plants |
en |
dc.subject.other |
Chemical oxygen demand |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Effluents |
en |
dc.subject.other |
Flocculation |
en |
dc.subject.other |
Flow simulation |
en |
dc.subject.other |
Fluid dynamics |
en |
dc.subject.other |
Pumps |
en |
dc.subject.other |
Sedimentation |
en |
dc.subject.other |
Settling tanks |
en |
dc.subject.other |
Sewage |
en |
dc.subject.other |
Sewage treatment |
en |
dc.subject.other |
Simulators |
en |
dc.subject.other |
Tanks (containers) |
en |
dc.subject.other |
Wastewater |
en |
dc.subject.other |
Wastewater reclamation |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
Water recycling |
en |
dc.subject.other |
Water treatment plants |
en |
dc.subject.other |
Sewage settling tanks |
en |
dc.subject.other |
computational fluid dynamics |
en |
dc.subject.other |
design |
en |
dc.subject.other |
flocculation |
en |
dc.subject.other |
modeling |
en |
dc.subject.other |
performance assessment |
en |
dc.subject.other |
sedimentation |
en |
dc.subject.other |
sewage |
en |
dc.subject.other |
wastewater |
en |
dc.subject.other |
water treatment |
en |
dc.subject.other |
Psyttalia |
en |
dc.title |
Design of secondary settling tanks using a CFD model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)0733-9372(2009)135:7(551) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)0733-9372(2009)135:7(551) |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A computational fluid dynamics (CFD) model is presented and applied in the design of the secondary settling tanks of Psyttalia Wastewater Treatment Plant in Athens, Europe's largest sewage treatment facility. The tanks are of the Gould Type II consisting of the following regions: an inlet-flocculation chamber with an inlet baffle, two zones of settling separated by an intermediate baffle, an outlet region, and a sludge collection region. The number of tanks and their dimensions were determined with an empirical design procedure. Then, theoretical considerations, information from similar existing tanks, and preliminary CFD calculations were combined to determine the dimensions of the main regions and the positions of the baffles. Finally, detailed CFD calculations were performed to examine the performance of the tanks for various design conditions. Computations showed that the flow in the inlet-flocculation region was completely mixed; while in the settling regions a ""three-layer"" structure with relatively constant layer heights was observed. CFD results were processed to determine parameters of practical interest, including the heights of the sludge blankets and the effluent suspended solids concentrations; these parameters were correlated satisfactorily with the Hazen number, which is used as a scaling parameter in primary settling tanks. © 2009 ASCE. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Environmental Engineering |
en |
dc.identifier.doi |
10.1061/(ASCE)0733-9372(2009)135:7(551) |
en |
dc.identifier.isi |
ISI:000267055100009 |
en |
dc.identifier.volume |
135 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
551 |
en |
dc.identifier.epage |
561 |
en |