dc.contributor.author |
Patermarakis, G |
en |
dc.contributor.author |
Moussoutzanis, K |
en |
dc.date.accessioned |
2014-03-01T01:30:09Z |
|
dc.date.available |
2014-03-01T01:30:09Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0013-4686 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19487 |
|
dc.subject |
Holistic model |
en |
dc.subject |
Lattice density and form variability |
en |
dc.subject |
Porous anodic alumina |
en |
dc.subject |
Steady state growth |
en |
dc.subject.classification |
Electrochemistry |
en |
dc.subject.other |
Aluminum |
en |
dc.subject.other |
Aluminum sheet |
en |
dc.subject.other |
Film growth |
en |
dc.subject.other |
Metals |
en |
dc.subject.other |
Nanocrystalline materials |
en |
dc.subject.other |
Sulfuric acid |
en |
dc.subject.other |
Anodic alumina films |
en |
dc.subject.other |
Anodising |
en |
dc.subject.other |
Barrier layers |
en |
dc.subject.other |
Electrolyte interfaces |
en |
dc.subject.other |
Growth mechanisms |
en |
dc.subject.other |
Holistic model |
en |
dc.subject.other |
Lattice density and form variability |
en |
dc.subject.other |
Oxide interfaces |
en |
dc.subject.other |
Oxide lattices |
en |
dc.subject.other |
Pore walls |
en |
dc.subject.other |
Porous anodic alumina |
en |
dc.subject.other |
Porous anodic alumina films |
en |
dc.subject.other |
Species transports |
en |
dc.subject.other |
Steady state growth |
en |
dc.subject.other |
Structural characteristics |
en |
dc.subject.other |
Sulphuric acids |
en |
dc.subject.other |
Thickness growths |
en |
dc.subject.other |
Alumina |
en |
dc.title |
Development and application of a holistic model for the steady state growth of porous anodic alumina films |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.electacta.2008.11.064 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.electacta.2008.11.064 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A holistic model was developed and applied to anodic alumina films galvanostatically grown in sulphuric acid solution at different anodising conditions thus characterised by different structural characteristics. The O2- and Al3+ species transport numbers near the metalloxide interface were determined that depended on both temperature and current density. The rate of film thickness growth was found to be proportional to the O2- anionic current through the barrier layer near the metalloxide interface. The results introduced a new growth mechanism theory embracing the rarefaction of barrier layer oxide lattice towards the metalloxide interface. The oxide density near the metalloxide is closely independent of anodising conditions and is related to the transformation of Al lattice to a transient oxide lattice about 37% rarer than that of gamma-Al2O3 that is further suitably transformed to denser, amorphous or nanocrystalline material as this oxide is shifted to the oxide vertical bar electrolyte interface and becomes the pore wall material. This gradual lattice density variability can explain many peculiar properties of anodic alumina films. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Electrochimica Acta |
en |
dc.identifier.doi |
10.1016/j.electacta.2008.11.064 |
en |
dc.identifier.isi |
ISI:000264743900006 |
en |
dc.identifier.volume |
54 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
2434 |
en |
dc.identifier.epage |
2443 |
en |